Mechanisms of action of the antidiabetic peptide [S4K]CPF-AM1 in db/db mice.

J Mol Endocrinol

Diabetes Research Group, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland,UK.

Published: February 2021

The antidiabetic effects and mechanisms of action of an analogue of a frog skin host-defence peptide belonging to the caerulein-precursor fragment family, [S4K]CPF-AM1 were investigated in db/db mice with a genetically inherited form of degenerative diabetes-obesity. Twice-daily treatment with the peptide (75 nmol/kg body weight) for 28 days significantly decreased blood glucose (P < 0.01) and HbA1c (P < 0.05) and increased plasma insulin (P < 0.05) concentrations with no effect on body weight, energy intake, body composition or plasma lipid profile. Peptide administration improved insulin sensitivity and intraperitoneal glucose tolerance. Elevated biomarkers of liver and kidney function associated with the db/db phenotype were significantly lowered by [S4K]CPF-AM1 administration. Peptide treatment significantly (P < 0.05) increased pancreatic insulin content and improved the responses of isolated islets to established secretagogues. Elevated expression of genes associated with insulin signalling (Slc2a4, Insr, Irs1, Akt1, Pik3ca, Ppm1b) in the skeletal muscle of db/db mice were significantly downregulated by peptide treatment. Genes associated with insulin secretion (Abcc8, Kcnj11, Slc2a2, Cacn1c, Glp1r, Gipr) were significantly upregulated by treatment with [S4K]CPF-AM1. Studies with BRIN-BD1I clonal β-cells demonstrated that the peptide evoked membrane depolarisation, increased intracellular Ca2+ and cAMP and activated the protein kinase C pathway. The data indicate that the antidiabetic properties of [S4K]CPF-AM1 mice are mediated by direct insulinotropic action and by regulation of transcription of genes involved in both the secretion and action of insulin.

Download full-text PDF

Source
http://dx.doi.org/10.1530/JME-20-0152DOI Listing

Publication Analysis

Top Keywords

db/db mice
12
mechanisms action
8
body weight
8
005 increased
8
peptide treatment
8
genes associated
8
associated insulin
8
peptide
7
insulin
6
[s4k]cpf-am1
5

Similar Publications

Background: Muscle atrophy is associated with Type 2 diabetes mellitus, which reduces the quality of life and lacks effective treatment strategies. Previously, it was determined that human umbilical cord mesenchymal stromal cell (hucMSC)-derived exosomes (EXOs) ameliorate diabetes-induced muscle atrophy. However, the systemic application of EXOs is less selective for diseased tissues, which reduces their efficacy and safety associated with their nonspecific biological distribution in vivo.

View Article and Find Full Text PDF

Mitochondrial function is crucial for hepatic lipid metabolism. Current research identifies two types of mitochondria based on their contact with lipid droplets: peridroplet mitochondria (PDM) and cytoplasmic mitochondria (CM). This work aimed to investigate the alterations of CM and PDM in metabolic dysfunction-associated steatotic liver disease (MASLD) induced by spontaneous type-2 diabetes mellitus (T2DM) in db/db mice.

View Article and Find Full Text PDF

Diabetes nephropathy (DN) is a severe diabetic chronic microvascular complication and the major cause of end-stage renal disease (ESRD). Our study aimed to investigate the effects of isoliquiritigenin (ISL) a natural flavonoid compound on DN and to explore the underlying mechanisms. The db/db mice were received intragastric treatments of ISL (5, 10, or 20 mg/kg), vehicle or positive drug metformin (300 mg/kg) once a day for 12 weeks, and the db/m mice treated with vehicle were used as controls.

View Article and Find Full Text PDF

The use of incretin analogues has emerged in recent years as an effective approach to achieve both enhanced insulin secretion and weight loss in type 2 diabetes (T2D) patients. Agonists which bind and stimulate multiple receptors have shown particular promise. However, off target effects, including nausea and diarrhoea, remain a complication of using these agents, and modified versions with optimized pharmacological profiles and/or biased signaling at the cognate receptors are increasingly sought.

View Article and Find Full Text PDF

Hirsutine Mitigates Ferroptosis in Podocytes of Diabetic Kidney Disease by Downregulating the p53/GPX4 Signaling Pathway.

Eur J Pharmacol

January 2025

Department of Endocrinology, Guang' anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China. Electronic address:

Diabetic kidney disease (DKD) is a leading cause of chronic kidney disease worldwide, and podocyte ferroptosis plays a crucial role in its pathogenesis. Hirsutine (HS) reduces blood glucose levels and improve insulin resistance in diabetic mice, suggesting its potential use in diabetes treatment. Here, we established a db/db mouse model of DKD and administered HS for 8 weeks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!