We studied the metabolic phenotype of a novel -LUC-iRFP713 knock-in reporter gene mouse model originally generated to monitor endogenous gene expression. Both reporter mice and reporter cells reliably reflected gene expression in vivo and in vitro. We here report an unexpected reduction in UCP1 content in homozygous knock-in (KI) reporter mice. As a result, the thermogenic capacity of KI mice stimulated by norepinephrine was largely blunted, making them more sensitive to an acute cold exposure. In return, these reporter mice with reduced UCP1 expression enabled us to investigate the physiological role of UCP1 in the prevention of weight gain. We observed no substantial differences in body mass across the three genotypes, irrespective of the type of diet or the ambient temperature, possibly due to the insufficient UCP1 activation. Indeed, activation of UCP1 by daily injection of the selective β-adrenergic receptor agonist CL316,243 resulted in significantly greater reduction of body weight in wild-type mice than in KI mice. Taken together, we conclude that the intact expression of UCP1 is essential for cold-induced thermogenesis but the presence of UCP1 per se does not protect mice from diet-induced obesity. To study the functional role of UCP1-dependent brown adipose tissue thermogenesis for energy balance, new animal models are needed. By metabolic phenotyping of a novel mouse model with low UCP1 levels in brown fat, we demonstrate that the susceptibility to diet-induced obesity is not increased despite impaired cold-induced thermogenic capacity. Brown fat requires pharmacological activation to promote negative energy balance in diet-induced obese mice.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8260371 | PMC |
http://dx.doi.org/10.1152/ajpendo.00285.2020 | DOI Listing |
Nutrients
January 2025
Department of Anatomy, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand.
High-fat diet (HFD)-induced obesity represents a significant challenge to male reproductive health, affecting approximately 13% of the global adult population. This comprehensive review synthesizes current evidence regarding mulberry ( L.) fruit extract's therapeutic potential for HFD-induced male reproductive dysfunction.
View Article and Find Full Text PDFNutrients
January 2025
Institute of Molecular Biomedicine, Medical Faculty, Comenius University, 83303 Bratislava, Slovakia.
The global pandemic of obesity poses a serious health, social, and economic burden. Patients living with obesity are at an increased risk of developing noncommunicable diseases or to die prematurely. Obesity is a state of chronic low-grade inflammation.
View Article and Find Full Text PDFBiomedicines
January 2025
Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima 28045, Colima, Mexico.
In recent years, the role of neurotrophins and their receptors in peripheral tissues has been of great interest. At a metabolic level, the brain-derived neurotrophic factor (BDNF) and its receptor trkB have been reported to participate in insulin secretion from the pancreas in response to increases in circulating blood glucose. To determines the role of the BDNF-trkB pathway in insulin secretion and pancreatic morphology in rats fed a cafeteria-style diet for 16 weeks.
View Article and Find Full Text PDFChin Med
January 2025
State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China.
Objective: Cinnamic acid (CA) is a bioactive compound isolated from cinnamon. It has been demonstrated to ameliorate inflammation and metabolic diseases, which are associated with endothelial dysfunction. This study was aimed to study the potential protective effects of CA against diabetes-associated endothelial dysfunction and its underlying mechanisms.
View Article and Find Full Text PDFNat Commun
January 2025
The Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, New York, USA.
The visceral organ-brain axis, mediated by vagal sensory neurons, is essential for maintaining various physiological functions. Here, we investigate the impact of liver-projecting vagal sensory neurons on energy balance, hepatic steatosis, and anxiety-like behavior in mice under obesogenic conditions. A small subset of vagal sensory neurons innervate the liver and project centrally to the nucleus of the tractus solitarius, area postrema, and dorsal motor nucleus of the vagus, and peripherally to the periportal areas in the liver.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!