Since the emergence of novel Coronavirus (SARS-CoV-2) infection in Wuhan, China in December 2019, it has now spread to over 205 countries. The ever-growing list of globally spread corona virus-19 disease (COVID-19) patients has demonstrated the high transmission rate among the human population. Currently, there are no FDA approved drugs or vaccines to prevent and treat the infection of the SARS-CoV-2. Considering the current state of affairs, there is an urgent unmet medical need to identify novel and effective approaches for the prevention and treatment of COVID-19 by re-evaluating the knowledge of traditional medicines and repurposing of drugs. Here, we used molecular docking and molecular dynamics simulation approach to explore the beneficial roles of phytochemicals and active pharmacological agents present in the Indian herbs which are widely used in the preparation of Ayurvedic medicines in the form of Kadha to control various respiratory disorders such as cough, cold and flu. Our study has identified an array of phytochemicals present in these herbs which have significant docking scores and potential to inhibit different stages of SARS-CoV-2 infection as well as other Coronavirus target proteins. The phytochemicals present in these herbs possess significant anti-inflammatory property. Apart from this, based on their pharmaceutical characteristics, we have also performed in-silico drug-likeness and predicted pharmacokinetics of the selected phytochemicals found in the Kadha. Overall our study provides scientific justification in terms of binding of active ingredients present in different plants used in Kadha preparation with viral proteins and target proteins for prevention and treatment of the COVID-19.Communicated by Ramaswamy H. Sarma.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7754934 | PMC |
http://dx.doi.org/10.1080/07391102.2020.1852119 | DOI Listing |
J Biomol Struct Dyn
January 2025
University of Health Sciences, Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Vietnam.
The COVID-19 pandemic posed a threat to global society. Delta and Omicron are concerning variants due to the risk of increasing human-to-human transmissibility and immune evasion. This study aims to evaluate the binding ability of these variants toward the angiotensin-converting enzyme 2 receptor and antibodies using a computational approach.
View Article and Find Full Text PDFJ Biomol Struct Dyn
January 2025
College of Applied Medical Sciences, lmam Abdulrahman Bin Faisal University (lAU), Dammam, Saudi Arabia.
The present study explores the conformational dynamics of the membrane protein of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) within the Endoplasmic Reticulum-Golgi Intermediate Compartment (ERGIC) complex using an all-atomistic molecular dynamics simulation approach. Significant structural changes were observed in the N-terminal, C-terminal, transmembrane, and beta-sheet sandwich domains of the MERS-CoV membrane protein. This study also highlights the structural similarities between the MERS-CoV and the SARS-CoV-2 membrane proteins, particularly in how both exhibit a distinct kink in the transmembrane helix caused by aromatic residue-lipid interactions.
View Article and Find Full Text PDFSci Rep
January 2025
Bioinformatics Centre, Savitribai Phule Pune University, Pune, Maharashtra, 411007, India.
COVID-19 has proved to be a global health crisis during the pandemic, and the emerging JN.1 variant is a potential threat. Therefore, finding alternative antivirals is of utmost priority.
View Article and Find Full Text PDFBMJ Open
January 2025
Department of Public Health, Policy and Systems, University of Liverpool, Liverpool, UK.
Objectives: To evaluate the effectiveness of localised Tier 3 restrictions, implemented in England in December 2020, on reducing COVID-19 hospitalisations compared with less stringent Tier 2 measures and the variations by neighbourhood deprivation and the prevalence of Alpha (B.1.1.
View Article and Find Full Text PDFTransplant Proc
January 2025
Gastroenterolgy and Hepatology Department, Group of Clinical and Translational Research in Liver Diseases, Research Institution Valdecilla (IDIVAL), University Hospital Marqués de Valdecilla, Santander, Spain. Electronic address:
Background: The Omicron variant of SARS-CoV-2 emerged as a new variant of concern, characterized by high transmissibility and lower severity compared with previous variants, and became the majority variant in the sixth wave in Spain. This study aims to assess the impact of SARS-CoV-2 infection on liver transplant recipients (LTRs) during 2023 in the population of Cantabria.
Methods: The study included 295 LTRs undergoing follow-up at the Liver Transplant Unit of the Marqués de Valdecilla University Hospital.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!