The synthetic methodology to covalently link donors to form cyclophane-based thermally activated delayed fluorescence (TADF) molecules is presented. These are the first reported examples of TADF cyclophanes with "electronically innocent" bridges between the donor units. Using a phenothiazine-dibenzothiophene-,-dioxide donor-acceptor-donor (D-A-D) system, the two phenothiazine (PTZ) donor units were linked by three different strategies: (i) ester condensation, (ii) ether synthesis, and (iii) ring closing metathesis. Detailed X-ray crystallographic, photophysical and computational analyses show that the cyclophane molecular architecture alters the conformational distribution of the PTZ units, while retaining a certain degree of rotational freedom of the intersegmental D-A axes that is crucial for efficient TADF. Despite their different structures, the cyclophanes and their nonbridged precursors have similar photophysical properties since they emit through similar excited states resulting from the presence of the equatorial conformation of their PTZ donor segments. In particular, the axial-axial conformations, known to be detrimental to the TADF process, are suppressed by linking the PTZ units to form a cyclophane. The work establishes a versatile linking strategy that could be used in further functionalization while retaining the excellent photophysical properties of the parent D-A-D system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.joc.0c02174 | DOI Listing |
Front Transplant
January 2025
Department of Surgical, Medical, Biomolecular Pathology and Intensive Care, University of Pisa, Pisa, Italy.
Background And Aims: There is growing interest in the environmental impact of surgical procedures, yet more information is needed specifically regarding liver transplantation. This study aims to quantify the total greenhouse gas emissions, or carbon footprint, associated with adult whole-size liver transplantation from donors after brain death, including the relevant back-table graft preparation.
Methods: The carbon footprint was calculated retrospectively using a bottom-up approach.
Front Vet Sci
January 2025
Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Toluca, Mexico.
Introduction: In ruminants, a symbiotic rumen microbiota is responsible for supporting the digestion of dietary fiber and contributes to health traits closely associated with meat and milk quality. A holistic view of the physicochemical profiles of mixed rumen microbiota (MRM) is not well-illustrated.
Methods: The experiment was performed with a 3 × 4 factorial arrangement of the specific surface area (SSA: 3.
Nat Commun
January 2025
Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, China.
To achieve the commercialization of organic solar cells (OSCs), it is crucial not only to enhance power conversion efficiency (PCE) but also to improve device stability through rational molecular design. Recently emerging giant molecular acceptor (GMA) materials offer various advantages, such as precise chemical structure, high molecular weight (beneficial to film stability under several external stress), and impressive device efficiency, making them a promising candidate. Here, we report a dendritic hexamer acceptor developed through a branch-connecting strategy, which overcomes the molecular weight bottleneck of GMAs and achieves a high production yield over 58%.
View Article and Find Full Text PDFTransfus Med
January 2025
Histocompatibility & Immunogenetics, NHSBT Colindale Centre, London, UK.
Background: A large, retrospective study was designed to interrogate current NHS Blood and Transplant (NHSBT) HLA matching strategies for the provision of HLA selected platelets (HLA SP) and to determine whether additional factors such as ABO blood group matching, patient diagnosis, patient and/or donor age, sex, ethnicity, age of platelet unit at transfusion and possibly seasonal variation also play a role in transfusion efficacy.
Materials And Methods: Data for 56 640 HLA SP transfusions over a 3-year period were collected. Transfusions with missing data for any factor under consideration were excluded, resulting in a cohort of 13 044 transfusions for analysis.
Transfusion
January 2025
Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.
Background: Storage of packed red blood cells (RBCs) for transfusion leads to biochemical and morphological changes, increasing hemolysis risk. Urate levels in blood bags at donation contribute to the molecular heterogeneity and hemolytic propensity of stored RBCs. However, studies to date have been underpowered to investigate at scale the contribution of donor demographics and genetics to the heterogeneity in urate levels across donations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!