In this work, the influence of direct dual fuel injection on a compression ignition engine fueled with gasoline and diesel has been investigated. To do this, closed cycle combustion simulations have been performed. Gasoline has been supplied through port injection and early direct and late direct injection to achieve fuel stratification and emission reduction. Simulations have been done for various start of injection (SOI) timings of diesel fuel. A detailed discussion on a low temperature heat release (LTHR) mechanism has been done. Results revealed that the maximum gross indicated thermal efficiency (GITE) of 39% is obtained for port injection of gasoline mode. Direct dual fuel combustion (type 2) (DDC2) mode shows approximately 2% and 38% less GITE and oxides of nitrogen (NOx), respectively, and 40% more soot as compared to the port injection gasoline mode. DDC2 mode shows lower oxides of carbon and hydrocarbon emissions as compared to other dual fuel modes. More than 99% of combustion efficiency and less maximum pressure rise rate have been noticed in the DDC2 case. Strong LTHR and high temperature premixed combustion region have been found in advanced SOI timing cases (in DDC2). In-cylinder contours for the DDC2 case show that diesel and gasoline fuels combusted successively cause less in-cylinder temperature than that for the conventional dual fuel combustion case.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7689894PMC
http://dx.doi.org/10.1021/acsomega.0c04434DOI Listing

Publication Analysis

Top Keywords

dual fuel
20
direct dual
12
port injection
12
fuel injection
8
injection compression
8
compression ignition
8
ignition engine
8
injection gasoline
8
gasoline mode
8
fuel combustion
8

Similar Publications

Synthesis of Tin Oxide Nanoparticles from E-Waste for Photocatalytic Mixed-Dye Degradation under Sunlight.

ACS Omega

December 2024

Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Chennai Campus, Vandalur-Kelambakkam Road, Chennai, Tamil Nadu 600127, India.

Electronic waste (e-waste) has become a significant environmental concern worldwide due to the rapid advancement of technology and short product lifecycles. Waste-printed electronic boards (WPCBs) contain valuable metals and semiconductors; among them, tin can be recycled and repurposed for sustainable material production. This study presents a potential ecofriendly methodology for the recovery of tin from WPCBs in the form of tin oxide nanostructured powders.

View Article and Find Full Text PDF

The purpose of this review is to gain attention about intro the advanced and green technology that has dual action for both clean wastewater and produce energy. Water scarcity and the continuous energy crisis have arisen as major worldwide concerns, requiring the creation of ecologically friendly and sustainable energy alternatives. The rapid exhaustion of fossil resources needs the development of alternative energy sources that reduce carbon emissions while maintaining ecological balance.

View Article and Find Full Text PDF

Solution combustion synthesis of ZnO doped CuO nanocomposite for photocatalytic and sensor applications.

Sci Rep

January 2025

Department of Mechanical and Industrial Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.

ZnO-doped CuO nanocomposites (CuO-ZnO NPs) of 1, 3, and 5 mol% were prepared by the solution combustion method using ODH as a fuel (Oxlyl-hydrazide) at 500 °C and calcining at 1000 °C for two hours and the Structural, photocatalytic, and electrochemical properties were investigated by experimental and theoretical methods. X-ray diffraction (XRD) patterns revealed a crystallite size (D) range of 25 to 31 nm for pure CuO and 1, 3, and 5 mol% CuO-ZnO NPs. According to calculations, the optical energy band gap (Eg) of the NPs is between 2.

View Article and Find Full Text PDF

As the demand for sustainable energy sources intensifies, biodiesel emerges as a compelling renewable alternative to petroleum-based fuels. Leveraging waste cooking oil (WCO) as a feedstock not only offers an environmentally friendly fuel source but also addresses waste disposal issues. However, biodiesel production from WCO faces challenges, particularly due to its high free fatty acid (FFA) content, which can hinder efficient conversion and lead to soap formation in traditional alkaline-catalysed processes.

View Article and Find Full Text PDF

Photocatalytic conversion of CO and HO into high-value-added C2 fuels remains a tough challenge, mainly due to the insufficient concentration of photogenerated electrons for the instability of C1 intermediates, which often tend to desorb easily and disable to form C─C bonds. In this work, photoreduction of CO-to-CH is successfully achieved by introducing adjacent C, N dual-vacancy sites within the heptazine rings of ultrathin g-CN, which results in the opening of two neighboring heptazine rings and forms a distinctive dipole-limited domain field (DLDF) structure. In situ X-ray photoelectron spectra and in situ fourier transform infrared spectra provide direct evidence of the rapid accumulation and transformation of C1 intermediates, especially CO and CHO, within the DLDF.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!