Modeling the Effects of Module Size and Material Property on Thermoelectric Generator Power.

ACS Omega

China Pingmei Shenma Group, 63 Jianshe Road, 467000 Pingdingshan City, Henan Province, China.

Published: November 2020

It is known that thermoelectric power generators (TEGs) can utilize geothermal resources and recycle waste heat. It is vital to improve the thermoelectric power generation efficiency to economically and efficiently use these thermal resources. In this paper, ANSYS was used to build a three-dimensional model of a very simple TEG with only one pair of p- and n-legs (1-PN-TEG) to find the optimal design. The thickness of the semiconductor elements, the cross-sectional area of p- and n-type semiconductor elements, the heat insulation material, the thickness of copper sheet, and other factors were analyzed to study their effects on the power output of 1-PN-TEG. The results show that the power of TEG increases first and then decreases with the thickness of p- and n-legs (); the maximum power existed at a specific value of . The power increases when the cross-sectional areas of p- and n-type semiconductor elements become more extensive, but the power per area decreases. Furthermore, the power increases with the volume of p- and n-type semiconductor elements and tends to be stabilized finally. This observation may be used to estimate how much thermoelectric material is required to generate a specific value of TEG power. The gaps between p- and n-type semiconductor elements were filled with different heat insulation materials. The heat insulation material with lower thermal conductivity had a greater power output. The thickness of the copper sheet, as a conductor between p- and n-type semiconductor elements, was also investigated. The maximum power value was reached when the thickness of the copper sheet was equal to about 1.0 mm. All of the results obtained in this paper might provide a theoretical basis for the configuration and design optimization of a thermoelectric generator, making more efficient use of geothermal resources and the waste heat.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7689681PMC
http://dx.doi.org/10.1021/acsomega.0c03914DOI Listing

Publication Analysis

Top Keywords

semiconductor elements
24
n-type semiconductor
20
power
12
heat insulation
12
thickness copper
12
copper sheet
12
thermoelectric generator
8
thermoelectric power
8
geothermal resources
8
waste heat
8

Similar Publications

Adhesion at the interface between dissimilar materials in the semiconductor industry is an important topic, but reliable quantitative methods for strongly adhesive or highly plastic layers are hardly available. This study aims to investigate the suitability of the cross-sectional nanoindentation (CSN) method for determination of the critical energy release rate of thin film stacks in the presence of a polyimide layer as a representative structure for such a case. For this purpose, the adhesion of a deliberately weakened Si/SiO interface in a Si/SiO/Al/SiN/polyimide stack is examined by systematic variation of the experimental parameters.

View Article and Find Full Text PDF

Covalent semiconductors of the carbon nitride family are among the most promising systems to realize "artificial photosynthesis", that is exploiting synthetic materials which use sunlight as an energy source to split water into its elements or converting CO into added value chemicals. However, the role of surface interactions and electronic properties on the reaction mechanism remain still elusive. Here, we use in-situ spectroscopic techniques that enable monitoring surface interactions in carbon nitride under artificial photosynthetic conditions.

View Article and Find Full Text PDF

Organic-inorganic hybrid lead halides have been extensively studied due to their outstanding physical properties and diverse compositional elements. However, environmentally benign tin-based hybrids with remarkable flexibility in bandgap engineering have been less investigated. Herein, we report the successful design and synthesis of three tin-based organic-inorganic hybrid compounds through precise molecular modification: [Me(i-Pr)N][SnBr] (), [MeCHCl(i-Pr)N][SnBr] (), and [MeCHBr(i-Pr-Br)N][SnBr] ().

View Article and Find Full Text PDF

Metallic oxide can induce localized surface plasmon resonance (LSPR) through creating vacancies, which effectively achieve high carrier concentrations and offer advantages such as versatility and tunability. However, vacancies are typically created by altering the stoichiometric ratio of elements through doping, and it is challenging to achieve LSPR enhancement in the visible spectral range. Here, we have assembled CuO-superlattices to induce a high concentration of oxygen vacancies, resulting in LSPR within the visible spectrum.

View Article and Find Full Text PDF

A novel dual-mode detection method for microRNA-21 was developed. Photoluminescent (PL) and multiphonon resonant Raman scattering (MRRS) techniques were combined by using ZnTe nanoparticles as signal probes for reliable detection. The catalytic hairpin assembly (CHA) strategy was integrated with superparamagnetic FeO nanoparticle clusters (NCs) to enhance sensitivity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!