A spinal root avulsion is the most severe proximal peripheral nerve lesion possible. Avulsion of ventral root filaments disconnects spinal motoneurons from their target muscles, resulting in complete paralysis. In patients that undergo brachial plexus nerve repair, axonal regeneration is a slow process. It takes months or even years to bridge the distance from the lesion site to the distal targets located in the forearm. Following ventral root avulsion, without additional pharmacological or surgical treatments, progressive death of motoneurons occurs within 2 weeks (Koliatsos et al., 1994). Reimplantation of the avulsed ventral root or peripheral nerve graft can act as a conduit for regenerating axons and increases motoneuron survival (Chai et al., 2000). However, this beneficial effect is transient. Combined with protracted and poor long-distance axonal regeneration, this results in permanent function loss. To overcome motoneuron death and improve functional recovery, several promising intervention strategies are being developed. Here, we focus on GDNF gene-therapy. We first introduce the experimental ventral root avulsion model and discuss its value as a proxy to study clinical neurotmetic nerve lesions. Second, we discuss our recent studies showing that GDNF gene-therapy is a powerful strategy to promote long-term motoneuron survival and improve function when target muscle reinnervation occurs within a critical post-lesion period. Based upon these observations, we discuss the influence of timing of the intervention, and of the duration, concentration and location of GDNF delivery on functional outcome. Finally, we provide a perspective on future research directions to realize functional recovery using gene therapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7673415 | PMC |
http://dx.doi.org/10.3389/fbioe.2020.583184 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Department of Neurology, Yale School of Medicine, New Haven, CT 06520.
Pain impacts billions of people worldwide, but treatment options are limited and have a spectrum of adverse effects. The search for safe and nonaddictive pain treatments has led to a focus on key mediators of nociceptor excitability. Voltage-gated sodium (Nav) channels in the peripheral nervous system-Nav1.
View Article and Find Full Text PDFInt J Legal Med
January 2025
London Neurodegenerative Diseases Brain Bank, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
The diagnosis of abusive head trauma (AbHT) in children is a challenging one that needs to be differentiated from natural disease and accidental head injury (AcHT). There is increasing evidence from the Neuroradiology field showing spinal cord injury in children subject to AbHT, which has, so far, been poorly investigated pathologically. In this study we retrospectively reviewed the forensic records of 110 paediatric head injury cases over an eight-year-period.
View Article and Find Full Text PDFPain Pract
February 2025
Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, Colombia.
Objectives: In the last 20 years, we have seen the flourishing of multiple treatments targeting the dorsal root ganglion (DRG) for pain. However, there is concern regarding the variation in the location of the DRG, which could influence the long-term clinical outcomes. The aim of this work was to determine the exact position of the DRG in the spine and propose a pre-surgical planning.
View Article and Find Full Text PDFPain Pract
February 2025
Department of Anesthesiology, University of Wisconsin, Madison, Wisconsin, USA.
Objective: To compare the efficacy of closed-loop spinal cord stimulation (CL-SCS) and dorsal root ganglion (DRG) stimulation in managing chronic cancer-related pain.
Material/methods: A retrospective review was conducted with IRB exemption for four patients with cancer-related pain who underwent combination stimulator trials. Patients were trialed with both CL-SCS and DRG stimulation for 8-10 days, with assessments of pain relief, functional improvement, sleep improvement, pain medication changes, and overall satisfaction.
Sci Rep
January 2025
Department of Orthopedics, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, PR, China.
Currently, Unilateral biportal endoscopy is widely used in the surgical treatment of lumbar spinal stenosis. To investigate the feasibility of bilateral synchronous UBE to unilateral laminotomy and bilateral decompression(BS-UBE-ULBD) for treating two-level lumbar spinal stenosis (LSS). Sixty-four patients with two-level lumbar spinal stenosis (LSS) treated with BS-UBE-ULBD from October 2022 to January 2024 were retrospectively analyzed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!