The COVID-19 pandemic has the potential to cause high morbidity and mortality in crisis-affected populations. Delivering COVID-19 treatment services in crisis settings will likely entail complex trade-offs between offering services of clinical benefit and minimising risks of nosocomial infection, while allocating resources appropriately and safeguarding other essential services. This paper outlines considerations for humanitarian actors planning COVID-19 treatment services where vaccination is not yet widely available. We suggest key decision-making considerations: allocation of resources to COVID-19 treatment services and the design of clinical services should be based on community preferences, likely opportunity costs, and a clearly articulated package of care across different health system levels. Moreover, appropriate service planning requires information on the expected COVID-19 burden and the resilience of the health system. We explore COVID-19 treatment service options at the patient level (diagnosis, management, location and level of treatment) and measures to reduce nosocomial transmission (cohorting patients, protecting healthcare workers). Lastly, we propose key indicators for monitoring COVID-19 health services.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7686825PMC
http://dx.doi.org/10.1186/s13031-020-00325-6DOI Listing

Publication Analysis

Top Keywords

covid-19 treatment
20
treatment services
16
covid-19
8
planning covid-19
8
services
8
health system
8
treatment
6
considerations planning
4
services humanitarian
4
humanitarian responses
4

Similar Publications

This study quantifies the impact of COVID-19 vaccination on hospitalization for COVID-19 infection in a South African private health insurance population. This retrospective cohort study is based on the analysis of demographic and claims records for 550,332 individuals belonging to two health insurance funds between 1 March 2020 and 31 December 2022. A Cox Proportional Hazards model was used to estimate the impact of vaccination (non-vaccinated, partly vaccinated, fully vaccinated) on COVID-19 hospitalization risk; and zero-inflated negative binomial models were used to estimate the impact of vaccination on hospital utilization and hospital expenditure for COVID-19 infection, with adjustments for age, sex, comorbidities and province of residence.

View Article and Find Full Text PDF

Mathematical and statistical methods are invaluable in epidemiological investigations, enhancing our understanding of disease transmission dynamics and informing effective control measures. In this study, we presented a method to estimate transmissibility using patient-level data, with application to the 2015 MERS outbreak at Pyeongtaek St. Mary's Hospital, the Republic of Korea.

View Article and Find Full Text PDF

This study identifies the secondary metabolites from Alternaria alternate and evaluates their ACE-2: Spike RBD (SARS-CoV-2) inhibitory activity confirmed via immunoblotting in human lung microvascular endothelial cells. In addition, their in vitro anti-inflammatory potential was assessed using a cell-based assay in LPS-treated RAW 264.7 macrophage cells.

View Article and Find Full Text PDF

Background: Patients with end-stage kidney disease often prefer home-based dialysis due to higher self-efficacy, which relates to improved medical treatment adherence. Kidney transplantation (KT) success depends on adhering to immunosuppressive medication post-transplant.

Objectives: To investigate whether adherence post-kidney transplantation (KT) and patients' attitudes toward immunosuppression were influenced by their prior dialysis type modality.

View Article and Find Full Text PDF

Structure-guided engineering of a mutation-tolerant inhibitor peptide against variable SARS-CoV-2 spikes.

Proc Natl Acad Sci U S A

January 2025

Cellular and Structural Physiology Laboratory, Advanced Research Initiative, Institute of Integrated Research, Institute of Science Tokyo, Bunkyo-ku, Tokyo 113-8510, Japan.

Pathogen mutations present an inevitable and challenging problem for therapeutics and the development of mutation-tolerant anti-infective drugs to strengthen global health and combat evolving pathogens is urgently needed. While spike proteins on viral surfaces are attractive targets for preventing viral entry, they mutate frequently, making it difficult to develop effective therapeutics. Here, we used a structure-guided strategy to engineer an inhibitor peptide against the SARS-CoV-2 spike, called CeSPIACE, with mutation-tolerant and potent binding ability against all variants to enhance affinity for the invariant architecture of the receptor-binding domain (RBD).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!