Echo View Cells From Bio-Inspired Sonar.

Front Neurorobot

Department of Electrical and Computer Engineering, University of Maryland, College Park, MD, United States.

Published: November 2020

Place recognition is naturally informed by the mosaic of sensations we remember from previously visiting a location and general knowledge of our location in the world. Neurons in the mammalian brain (specifically in the hippocampus formation) named "place cells" are thought to reflect this recognition of place and are involved in implementing a spatial map that can be used for path planning and memory recall. In this research, we use bat-inspired sonar to mimic how bats might sense objects in the environment and recognize the views associated with different places. These "echo view cells" may contribute (along with odometry) to the creation of place cell representations observed in bats. Although detailed sensory template matching is straightforward, it is quite unlikely that a flying animal or robot will return to the exact 3-D position and pose where the original memory was captured. Instead, we strive to recognize views over extended regions that are many body lengths in size, reducing the number of places to be remembered for a map. We have successfully demonstrated some of this spatial invariance by training feed-forward neural networks (traditional neural networks and spiking neural networks) to recognize 66 distinct places in a laboratory environment over a limited range of translations and rotations. We further show how the echo view cells respond between known views and how their outputs can be combined over time for continuity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7674830PMC
http://dx.doi.org/10.3389/fnbot.2020.567991DOI Listing

Publication Analysis

Top Keywords

neural networks
12
echo view
8
view cells
8
recognize views
8
cells bio-inspired
4
bio-inspired sonar
4
sonar place
4
place recognition
4
recognition naturally
4
naturally informed
4

Similar Publications

Current approaches for classifying biosensor data in diagnostics rely on fixed decision thresholds based on receiver operating characteristic (ROC) curves, which can be limited in accuracy for complex and variable signals. To address these limitations, we developed a framework that facilitates the application of machine learning (ML) to diagnostic data for the binary classification of clinical samples, when using real-time electrochemical measurements. The framework was applied to a real-time multimeric aptamer assay (RT-MAp) that captures single-frequency (12.

View Article and Find Full Text PDF

QuanFormer: A Transformer-Based Precise Peak Detection and Quantification Tool in LC-MS-Based Metabolomics.

Anal Chem

January 2025

State Key Laboratory of Cellular Stress Biology, Institute of Artificial Intelligence, School of Life Sciences, Faculty of Medicine and Life Sciences, National Institute for Data Science in Health and Medicine, XMU-HBN skin biomedical research center, Xiamen University, Xiamen, Fujian 361102, China.

In metabolomic analysis based on liquid chromatography coupled with mass spectrometry, detecting and quantifying intricate objects is a massive job. Current peak picking methods still cause high rates of incorrectly picked peaks to influence the reliability and reproducibility of results. To address these challenges, we developed QuanFormer, a deep learning method based on object detection designed to accurately quantify peak signals.

View Article and Find Full Text PDF

Background: Sudden sensorineural hearing loss (SSNHL) is associated with abnormal changes in the brain's central nervous system. Previous studies on the brain networks of SSNHL have primarily focused on functional connectivity within the brain. However, in addition to functional connectivity, structural connectivity also plays a crucial role in brain networks.

View Article and Find Full Text PDF

Background: Osteoporosis is a common age-related disease with disabling consequences, the early diagnosis of which is difficult due to its long and hidden course, which often leads to diagnosis only after a fracture. In this regard, great expectations are placed on advanced developments in machine learning technologies aimed at predicting osteoporosis at an early stage of development, including the use of large data sets containing information on genetic and clinical predictors of the disease. Nevertheless, the inclusion of DNA markers in prediction models is fraught with a number of difficulties due to the complex polygenic and heterogeneous nature of the disease.

View Article and Find Full Text PDF

Unlabelled: Motivated behaviors are regulated by distributed forebrain networks. Traditional approaches have often focused on individual brain regions and connections that do not capture the topographic organization of forebrain connectivity. We performed co-injections of anterograde and retrograde tract tracers in rats to provide novel high-spatial resolution evidence of topographic connections that elaborate a previously identified closed-loop forebrain circuit implicated in affective and motivational processes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!