A highly integrated sensing paper for wearable electrochemical sweat analysis.

Biosens Bioelectron

Engineering Research Center of Advanced Glasses Manufacturing Technology, Ministry of Education, Donghua University, Shanghai, 201620, PR China.

Published: February 2021

Wearable electrochemical sensors have attracted tremendous attention in recent years. Significant progress has been achieved, particularly in device integration. Most wearable devices are integrated on thin-film polymer, however, less attention is paid to the sweat flow at human-device interfaces, which is of great significance for continuous real-time analysis and long-term skin comfort. Here, we reported a low-cost, freestanding and disposable highly integrated sensing paper (HIS paper) for real-time analysis of sweat. By using a simple printing process, the HIS paper combining hydrophobic protecting wax, conducting electrodes, and the incorporated MXene/methylene blue (TiCT/MB) active materials was assembled. In particular, the printed paper was folded into a multi-layer structure, in which a reasonable designed three-dimensional (3D) sweat diffusion path is established by connecting the hydrophilic regions of each layer, providing efficient pathways for the collection and diffusion of sweat along the vertical direction of the folded HIS paper. More importantly, the independent 3D position of three-electrode facilitates the decoration and fixation of enzymes, as well as the accessibility of electrolytes. In addition, a dual-channel electrochemical sensor that can simultaneously detect glucose and lactate with sensitivity of 2.4 nA μM and 0.49 μA mM respectively was produced based on the HIS paper. This HIS paper provides a miniaturized, low-cost and flexible solution for a range of biochemical platforms, including wearable bioelectronics.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2020.112828DOI Listing

Publication Analysis

Top Keywords

highly integrated
8
integrated sensing
8
paper
8
sensing paper
8
wearable electrochemical
8
real-time analysis
8
paper paper
8
sweat
5
wearable
4
paper wearable
4

Similar Publications

Background: Trials conducted in highly selected populations have shown that type 2 diabetes (T2D) remission is possible, but the feasibility and acceptability of supporting remission in routine clinical practice remain uncertain.

Aim: We explored primary care professionals' perceptions and understandings of T2D remission and their views about supporting remission within routine clinical care.

Methods: Semi-structured interviews were conducted with 14 GPs and nine nurses working in Scottish general practices.

View Article and Find Full Text PDF

Purpose: The aim of the work is to develop a cascaded diffusion-based super-resolution model for low-resolution (LR) MR tagging acquisitions, which is integrated with parallel imaging to achieve highly accelerated MR tagging while enhancing the tag grid quality of low-resolution images.

Methods: We introduced TagGen, a diffusion-based conditional generative model that uses low-resolution MR tagging images as guidance to generate corresponding high-resolution tagging images. The model was developed on 50 patients with long-axis-view, high-resolution tagging acquisitions.

View Article and Find Full Text PDF

Genomic imprinting is the parent-of-origin dependent monoallelic expression of genes often associated with regions of germline-derived DNA methylation that are maintained as differentially methylated regions (gDMRs) in somatic tissues. This form of epigenetic regulation is highly conserved in mammals and is thought to have co-evolved with placentation. Tissue-specific gDMRs have been identified in human placenta, suggesting that species-specific imprinting dependent on unorthodox epigenetic establishment or maintenance may be more widespread than previously anticipated.

View Article and Find Full Text PDF

Background: With early detection and improvements in systemic and local therapies, millions of people are surviving cancer, but for some at a high cost. In some cancer types, cardiovascular disease now competes with recurrent cancer as the cause of death. Traditional care models, in which the cardiologist or oncologist assess patients individually, do not address complex cancer and cardiovascular needs.

View Article and Find Full Text PDF

Epicardium, the most outer mesothelium, exerts crucial functions in fetal heart development and adult heart regeneration. Here we use a three-step manipulation of WNT signalling entwined with BMP and RA signalling for generating a self-organized epicardial organoid that highly express with epicardium makers WT1 and TCF21 from human embryonic stem cells. After 8-days treatment of TGF-beta following by bFGF, cells enter into epithelium-mesenchymal transition and give rise to smooth muscle cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!