Basic mechanisms are known to promote salt tolerance in plants: a delay in Na uptake or rapid Na remobilization from leaf tissue. We measured dynamics of the Na/K ratio and components of carbon metabolism during the first 72 h after saline stress (200 mM NaCl) began in Cenostigma pyramidale, a woody species, under controlled conditions. Saline stress at two times: one plant group at the beginning of the morning and the other in the evening. Stressed plants had three times more Na in leaves than did control plants in the first 24 h. However, in the next few hours, despite new applications of saline solution, the Na/K ratio continued to decline. Several samples, including night treatments, provided evidence that this species uses Na recirculation mechanisms to endure salt stress. Effects of salt on the traits evaluated differed depending on the time when stress began. Between the two saline treatments, in the first 24 h after saline stress, gas exchange decreased more strongly in morning-stressed plants, when large amounts of Na reached the leaf and K left this organ. Nevertheless, when stress was applied in the evening, leaf Na remobilization was faster, and the soluble sugar/starch ratio remained greater than did the control. Our data suggested that time of the beginning of salt stress could change the level of damage. Morning-stressed plants synthesized greater amounts of proline, HO, and malondialdehyde than did night-stressed plants. We recommend that details regarding the time of stress be taken into consideration in physiological studies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.plaphy.2020.11.026 | DOI Listing |
Plants (Basel)
December 2024
Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China.
L., (pitaya) is an important tropical fruit crop, and faces significant challenges from soil salinity and heavy metal toxicity. This study explores the role of melatonin (M) in enhancing stress tolerance in pitaya against salinity (S) and copper (Cu) toxicity, both individually and in combination (SCu).
View Article and Find Full Text PDFPlants (Basel)
December 2024
College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524008, China.
Salt stress is one of the principal abiotic stresses limiting agricultural production and seriously inhibiting seed germination rates. This study selected the salt-tolerant rice variety HD961 and the salt-sensitive rice variety 9311 as experimental materials to investigate the physiological and metabolic effects of exogenous Spd seed priming on rice seeds and seedlings under NaCl stress. The experiment involved treating rice seeds with 0.
View Article and Find Full Text PDFPlants (Basel)
December 2024
College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China.
The gene family plays a crucial role in plant growth, development, and responses to biotic and abiotic stresses. , a warm-season turfgrass with exceptional salt tolerance, can be irrigated with seawater. However, the gene family in seashore paspalum remains poorly understood.
View Article and Find Full Text PDFPlants (Basel)
December 2024
College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China.
is a representative aromatic species. Wild roses are known for their strong tolerance to highly salty environments, whereas cultivated varieties of roses exhibit lower salt stress tolerance, limiting their development and industrial expansion. Previous studies have shown that C2H2-type zinc finger proteins play a crucial role in plants' resistance to abiotic stresses.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China.
Heterotrimeric G-proteins are fundamental signal transducers highly conserved in plant species, which play crucial roles in regulating plant growth, development, and responses to abiotic stresses. Identification of G-protein members and their expression patterns in plants are essential for improving crop resilience against environmental stresses. Here, we identified eight heterotrimeric G-protein genes localized on four chromosomes within the barley genome by using comprehensive genome-wide analysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!