Immobilization of Cu (II) via a graphene oxide-supported strategy for antibacterial reutilization with long-term efficacy.

J Hazard Mater

College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, People's Republic of China; Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, People's Republic of China. Electronic address:

Published: May 2021

The past several decades have witnessed tremendous research to discover ways for controlling heavy metal pollution, but most of the strategies do not involve reuse of the captured heavy metals. Herein, we propose a graphene oxide -based strategy for the effective removal of Cu ions from water, coupled with their reuse as an antibacterial agent. Using GO nanosheets as an adsorbent and nanosupport, the Cu ions were effectively extracted from water (>99.9%) and reduced in situ to copper nanoparticles (Cu NPs) containing both crystalline Cu and CuO. The as-captured Cu NPs showed efficient in vitro antibacterial ability against Escherichia coli, reducing the bacteria from 10 to 10 CFU mL by using mg mL Cu NPs/GO NSs for 1 h. The minimum inhibitory concentration determined to be only 16 μg mL. For practical applications, Cu recovered from wastewater could reduce bacteria by 8 log CFU in 1 h. The recovered Cu was still able to reduce the bacteria by 7 log CFU after 2 months of storage in an argon atmosphere. This strategy of extracting heavy metals and subsequently reutilizing to kill bacteria will be of great significance for environmental remediation and public healthcare.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2020.124601DOI Listing

Publication Analysis

Top Keywords

heavy metals
8
reduce bacteria
8
immobilization graphene
4
graphene oxide-supported
4
oxide-supported strategy
4
strategy antibacterial
4
antibacterial reutilization
4
reutilization long-term
4
long-term efficacy
4
efficacy decades
4

Similar Publications

An increasing amount of water pollution is being caused by an increase in industrial activity. Recently, a wide range of methods, including extraction, chemical coagulation, membrane separation, chemical precipitation, adsorption, and ion exchange, have been used to remove heavy metals from aqueous solutions. The adsorption technique is believed to be the most highly effective method for eliminating heavy metals from wastewater among all of them.

View Article and Find Full Text PDF

Objectives: This study aimed to compare the marginal adaptation of a cold ceramic (CC) sealer with the single-cone obturation technique with that of an AH-26 sealer with the lateral compaction technique in single-canal teeth.

Materials And Methods: In this in vitro experimental study, the root canals of 24 extracted single-rooted single-canal teeth were instrumented to F3 files by the crown-down technique and randomly assigned to 2 groups (n = 12). The root canals were obturated with a CC sealer and single-cone obturation technique with 4% gutta-percha in group 1 and with an AH-26 sealer and lateral compaction technique with 2% gutta-percha in group 2.

View Article and Find Full Text PDF

Astragaloside IV attenuates cadmium induced nephrotoxicity in rats by activating Nrf2.

Sci Rep

January 2025

Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University, (Third Military Medical University), Chongqing, China.

Acute kidney injury (AKI) has become a disease of global concern due to its high morbidity and mortality. This has highlighted the need for renoprotective agents. Astragaloside IV (AS-IV) is a saponin isolated from Astragalus membranaceus with good antioxidant, anti-inflammatory and anti-tumor properties.

View Article and Find Full Text PDF

Biosynthesis and activity of Zn-MnO nanocomposite in vitro with molecular docking studies against multidrug resistance bacteria and inflammatory activators.

Sci Rep

January 2025

Department of Hematology/Oncology, Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589, Kingdom of Saudi Arabia.

This study investigated the green synthesis of Zn-MnO nanocomposites via the fungus Penicillium rubens. Herein, the synthesized Zn-MnO nanocomposites were confirmed by UV-spectrophotometry with a top peak (370 nm). Transmission electron microscopy confirmed irregular particles with a spherical-like shape ranging from 25.

View Article and Find Full Text PDF

Nanotechnology has experienced significant advancements, attracting considerable attention in various biomedical applications. This innovative study synthesizes and characterizes Ge/PLA/AuNCs (gelatin/PLA/gold nanocomposites) using Syzygium cumini extract to evaluate their various biomedical applications. The UV-Visible spectroscopy results in an absorption peak at 534 nm were primarily confirmed by Ge/PLA/AuNCs synthesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!