Background And Objective: The human brain displays rich and complex patterns of interaction within and among brain networks that involve both cortical and subcortical brain regions. Due to the limited spatial resolution of surface electroencephalography (EEG), EEG source imaging is used to reconstruct brain sources and investigate their spatial and temporal dynamics. The majority of EEG source imaging methods fail to detect activity from subcortical brain structures. The reconstruction of subcortical sources is a challenging task because the signal from these sources is weakened and mixed with artifacts and other signals from cortical sources. In this proof-of-principle study we present a novel EEG source imaging method, the regional spatiotemporal Kalman filter (RSTKF), that can detect deep brain activity.
Methods: The regional spatiotemporal Kalman filter (RSTKF) is a generalization of the spatiotemporal Kalman filter (STKF), which allows for the characterization of different regional dynamics in the brain. It is based on state-space modeling with spatially heterogeneous dynamical noise variances, since models with spatial and temporal homogeneity fail to describe the dynamical complexity of brain activity. First, RSTKF is tested using simulated EEG data from sources in the frontal lobe, putamen, and thalamus. After that, it is applied to non-averaged interictal epileptic spikes from a presurgical epilepsy patient with focal epileptic activity in the amygdalo-hippocampal complex. The results of RSTKF are compared to those of low-resolution brain electromagnetic tomography (LORETA) and of standard STKF.
Results: Only RSTKF is successful in consistently and accurately localizing the sources in deep brain regions. Additionally, RSTKF shows improved spatial resolution compared to LORETA and STKF.
Conclusions: RSTKF is a generalization of STKF that allows for accurate, focal, and consistent localization of sources, especially in the deeper brain areas. In contrast to standard source imaging methods, RSTKF may find application in the localization of the epileptogenic zone in deeper brain structures, such as mesial frontal and temporal lobe epilepsies, especially in EEG recordings for which no reliable averaged spike shape can be obtained due to lack of the necessary number of spikes required to reach a certain signal-to-noise ratio level after averaging.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cmpb.2020.105830 | DOI Listing |
Acta Neurochir (Wien)
January 2025
Department of Neurosurgery, The Fourth Affiliated Hospital of Soochow University, Suzhou, China.
Background: Superficial temporal artery (STA)-middle cerebral artery (MCA) side-to-side microvascular anastomosis can achieve the same clinical effects as traditional STA-MCA end-to-side anastomosis in extracranial-intracranial revascularization surgery, furthermore, STA-MCA side-to-side anastomosis has the lower risk of postoperative cerebral hyperperfusion syndrome (CHS) and the potential to recruit all scalp arteries as the donor sources via self-regulation. Therefore, STA-MCA side-to-side microvascular anastomosis seems to be a revascularization strategy superior to traditional STA-MCA end-to-side anastomosis. In this study, we presented seven cases in which a STA-MCA side-to-side microvascular anastomosis was performed with a 4-5 mm long arteriotomy using the in-situ intraluminal suturing technique.
View Article and Find Full Text PDFJ Neurol
January 2025
Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany.
Background And Purpose: Endothelial dysfunction is considered an emerging therapeutic target to prevent complications during acute stroke and to prevent recurrent stroke. This review aims to provide an overview of the current knowledge on endothelial dysfunction, outline the diagnostic methods used to measure it and highlight the drugs currently being investigated for the treatment of endothelial dysfunction in acute ischemic stroke.
Methods: The PubMed® and ClinicalTrials.
J Neurol
January 2025
Western Institute of Neuroscience, Western University, London, Canada.
Background: Repeat neurological assessment is standard in cases of severe acute brain injury. However, conventional measures rely on overt behavior. Unfortunately, behavioral responses may be difficult or impossible for some patients.
View Article and Find Full Text PDFActa Neurochir (Wien)
January 2025
Department of Neurosurgery, College of Medicine, University of Michigan, Ann Arbor, MI, USA.
Background: Wall shear stress (WSS) plays a crucial role in the natural history of intracranial aneurysms (IA). However, spatial variations among WSS have rarely been utilized to correlate with IAs' natural history. This study aims to establish the feasibility of using spatial patterns of WSS data to predict IAs' rupture status (i.
View Article and Find Full Text PDFArch Toxicol
January 2025
STARTNETICS - Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133, Rome, Italy.
Femtosecond lasers represent a novel tool for tattoo removal as sources that can be operated at high power, potentially leading to different removal pathways and products. Consequently, the potential toxicity of its application also needs to be evaluated. In this framework, we present a comparative study of Ti:Sapphire femtosecond laser irradiation, as a function of laser power and exposure time, on water dispersions of Pigment Green 7 (PG7) and the green tattoo ink Green Concentrate (GC), which contains PG7 as its coloring agent.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!