Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Research conducted over the last two decades has dramatically advanced the understanding of store-operated calcium channels (SOCC) and their impact on renal function. Kidneys contain many types of cells, including those specialized for glomerular filtration (fenestrated capillary endothelium, podocytes), water and solute transport (tubular epithelium), and regulation of glomerular filtration and renal blood flow (vascular smooth muscle cells, mesangial cells). The highly integrated function of these myriad cells effects renal control of blood pressure, extracellular fluid volume and osmolality, electrolyte balance, and acid-base homeostasis. Many of these cells are regulated by Ca signaling. Recent evidence demonstrates that SOCCs are major Ca entry portals in several renal cell types. SOCC is activated by depletion of Ca stores in the sarco/endoplasmic reticulum, which communicates with plasma membrane SOCC via the Ca sensor Stromal Interaction Molecule 1 (STIM1). Orai1 is recognized as the main pore-forming subunit of SOCC in the plasma membrane. Orai proteins alone can form highly Ca selective SOCC channels. Also, members of the Transient Receptor Potential Canonical (TRPC) channel family are proposed to form heteromeric complexes with Orai1 subunits, forming SOCC with low Ca selectivity. Recently, Ca entry through SOCC, known as store-operated Ca entry (SOCE), was identified in glomerular mesangial cells, tubular epithelium, and renovascular smooth muscle cells. The physiological and pathological relevance and the characterization of SOCC complexes in those cells are still unclear. In this review, we summarize the current knowledge of SOCC and their roles in renal glomerular, tubular and vascular cells, including studies from our laboratory, emphasizing SOCE regulation of fibrotic protein deposition. Understanding the diverse roles of SOCE in different renal cell types is essential, as SOCC and its signaling pathways are emerging targets for treatment of SOCE-related diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7876646 | PMC |
http://dx.doi.org/10.1177/1535370220975207 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!