Transglutaminase 2 (TG2) is an enzyme which in the open conformation exerts transamidase activity, leading to protein cross-linking and fibrosis. In the closed conformation, TG2 participates in transmembrane signaling as a G protein. The unspecific transglutaminase inhibitor cystamine causes vasorelaxation in rat resistance arteries. However, the role of TG2 conformation in vascular function is unknown. We investigated the vascular effects of selective TG2 inhibitors by myography in isolated rat mesenteric and human subcutaneous resistance arteries, patch-clamp studies on vascular smooth muscle cells, and blood pressure measurements in rats and mice. LDN 27219 promoted the closed TG2 conformation and inhibited transamidase activity in mesenteric arteries. In contrast to TG2 inhibitors promoting the open conformation (Z-DON, VA5), LDN 27219 concentration-dependently relaxed rat and resistance human arteries by a mechanism dependent on nitric oxide, large-conductance calcium-activated and voltage-gated potassium channels 7, lowering blood pressure. LDN 27219 also potentiated acetylcholine-induced relaxation by opening potassium channels in the smooth muscle; these effects were abolished by membrane-permeable TG2 inhibitors promoting the open conformation. In isolated arteries from 35- to 40-week-old rats, transamidase activity was increased, and LDN 27219 improved acetylcholine-induced relaxation more than in younger rats. Infusion of LDN 27219 decreased blood pressure more effectively in 35- to 40-week than 12- to 14-week-old anesthetized rats. In summary, pharmacological modulation of TG2 to the closed conformation age-dependently lowers blood pressure and, by opening potassium channels, potentiates endothelium-dependent vasorelaxation. Our findings suggest that promoting the closed conformation of TG2 is a potential strategy to treat age-related vascular dysfunction and lowers blood pressure.

Download full-text PDF

Source
http://dx.doi.org/10.1161/HYPERTENSIONAHA.120.15352DOI Listing

Publication Analysis

Top Keywords

ldn 27219
24
blood pressure
24
lowers blood
12
resistance arteries
12
open conformation
12
transamidase activity
12
closed conformation
12
tg2 inhibitors
12
potassium channels
12
tg2
9

Similar Publications

Transglutaminase 2 (TG2) is an enzyme with multiple conformations. In its open conformation, TG2 exhibits transamidase activity linked to fibrosis, arterial remodeling, and endothelial dysfunction, a process enhanced by high glucose in endothelial cells. However, the closed conformation of TG2 contributes to transmembrane signaling and nitric oxide (NO)-dependent vasorelaxation.

View Article and Find Full Text PDF

Transglutaminase 2 (TG2) is an enzyme which in the open conformation exerts transamidase activity, leading to protein cross-linking and fibrosis. In the closed conformation, TG2 participates in transmembrane signaling as a G protein. The unspecific transglutaminase inhibitor cystamine causes vasorelaxation in rat resistance arteries.

View Article and Find Full Text PDF

Background: Terminally differentiated keratinocytes acquire corneocyte protein envelopes (CPE) complexed with corneocyte lipid envelopes (CLE). These two structural components of the corneocyte envelopes (CEs) undergo maturation by gaining in hydrophobicity, rigidity and surface area. Linoleoyl acylceramides are processed by 12R-lipoxygenase (12R-LOX) and other enzymes before transglutaminase (TG) attaches ω-hydroxyceramides to involucrin in the CPE.

View Article and Find Full Text PDF

Kinetic analysis of the interaction of tissue transglutaminase with a nonpeptidic slow-binding inhibitor.

Biochemistry

January 2007

Laboratory for Drug Discovery in Neurodegeneration, Harvard Center for Neurodegeneration and Repair, 65 Landsdowne Street, Fourth Floor, Cambridge, Massachusetts 02139, USA.

Tissue transglutaminase (TGase) is a Ca2+-dependent enzyme that catalyzes cross-linking of intracellular proteins through a mechanism that involves isopeptide bond formation between Gln and Lys residues and is allosterically regulated by GTP. TGase is thought to play a pathogenic role in neurodegenerative diseases by promoting aggregation of disease-specific proteins that accumulate as part of these disorders. Given the role that TGase plays in neurodegenerative disorders, we initiated a research program to discover inhibitors of this enzyme that might ultimately be developed into therapeutic agents.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!