Circular RNAs (circRNAs) are a group of RNAs featured by a covalently closed continuous loop structure. This study aimed to uncover the function and mechanism of circ-ubiquitin specific peptidase 36 (USP36) in endothelial cells treated with oxidized low-density lipoprotein (ox-LDL). The levels of circ-USP36, microRNA-98-5p (miR-98-5p) and vascular cell adhesion molecule 1 (VCAM1) were examined by a quantitative real-time polymerase chain reaction (qRT-PCR). The viability, apoptosis and inflammation were detected by (4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, flow cytometry and enzyme-linked immunosorbent assay (ELISA), respectively. Western blot assay was performed to detect the expression of apoptosis and proliferation-related markers and VCAM1 protein level. The targets of circ-USP36 and miR-98-5p were searched using starBase website, and dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay were applied to validate the above predictions. Ox-LDL exposure induced the upregulation of circ-USP36 in HUVEC cells. Circ-USP36 accelerated ox-LDL-induced apoptosis, inflammatory and viability inhibition of HUVEC cells. MiR-98-5p was a direct downstream gene of circ-USP36. Circ-USP36 promoted the injury of ox-LDL-induced HUVEC cells through targeting miR-98-5p. VCAM1 could bind to miR-98-5p, and the protective effects of miR-98-5p accumulation on ox-LDL-induced HUVEC cells were reversed by the transfection of VCAM1. VCAM1 was regulated by circ-USP36/miR-98-5p signaling in HUVEC cells. Ox-LDL promoted the apoptosis and inflammation but suppressed the viability of HUVEC cells through upregulating circ-USP36, thus elevating the expression of VCAM1 via miR-98-5p.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/iub.2419 | DOI Listing |
Tissue Eng Regen Med
January 2025
College of Materials Science and Engineering, Hunan University, Changsha, 410072, People's Republic of China.
Background: Tissue engineering holds promise for vascular repair and regeneration by mimicking the extracellular matrix of blood vessels. However, achieving a functional and thick vascular wall with aligned fiber architecture by electrospinning remains a significant challenge.
Methods: A novel electrospinning setup was developed that utilizes an auxiliary electrode and a spring.
Colloids Surf B Biointerfaces
January 2025
Department of Neurosurgery, The Affiliated Ganzhou Hospital, Jiangxi Medical College, Nanchang University, Ganzhou 341000, China. Electronic address:
To address the medical challenges posed by glioblastoma, a novel and high-performance tumor inhibitor (La@FA-CDs) composed of folic acid and lanthanum nitrate hexahydrate, was successfully synthesized and demonstrated effectiveness in inhibiting the growth of U251 and LN299 cells. The microstructure of La@FA-CDs was extensively analyzed by FTIR, UV-Vis, XPS, TEM, AFM NMR, and nanoparticle size analyzer. The optical and electrical properties of La@FA-CDs were characterized using a fluorescence spectrometer and a zeta potential analyzer.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang, Guizhou Province, China.
Background: Type I acute myocardial infarction (T1MI) has a very high morbidity and mortality rate. The role of thrombus-derived exosomes (TEs) in T1MI is unclear.
Methods: The objective of this study was to identify the optimal thrombolytic drug and concentration for extracting TEs.
Narra J
December 2024
Department of Cardiology and Vascular Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia.
Chronic limb-threatening ischemia (CLTI) is the most severe manifestation of peripheral arterial disease (PAD) and imposes a significantly high burden due to its high risk of mortality and amputation. Revascularization is the first-line treatment for CLTI; however, the amputation rate remains high, and approximately one-third of patients are not eligible for this treatment. Therefore, there is an urgent need for more effective therapeutic strategies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!