The epidermis and skin appendages are maintained by their resident epithelial stem cells, which undergo long-term self-renewal and multilineage differentiation. Upon injury, stem cells are activated to mediate re-epithelialization and restore tissue function. During this process, they often mount lineage plasticity and expand their fates in response to damage signals. Stem cell function is tightly controlled by transcription machineries and signalling transductions, many of which derail in degenerative, inflammatory and malignant dermatologic diseases. Here, by describing both well-characterized and newly emerged pathways, we discuss the transcriptional and signalling mechanisms governing skin epithelial homeostasis, wound repair and squamous cancer. Throughout, we highlight common themes underscoring epithelial stem cell plasticity and tissue-level crosstalk in the context of skin physiology and pathology.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8016706 | PMC |
http://dx.doi.org/10.1111/exd.14247 | DOI Listing |
Metaplastic breast cancer (MpBC) is a highly chemoresistant subtype of breast cancer with no standardized therapy options. A clinical study in anthracycline-refractory MpBC patients suggested that nitric oxide synthase (NOS) inhibitor NG-monomethyl-l-arginine (L-NMMA) may augment anti-tumor efficacy of taxane. We report that NOS blockade potentiated response of human MpBC cell lines and tumors to phosphoinositide 3-kinase (PI3K) inhibitor alpelisib and taxane.
View Article and Find Full Text PDFFront Bioeng Biotechnol
December 2024
Department of Bioengineering, University of Washington, Seattle, WA, United States.
Colonic epithelium is situated above a layer of fibroblasts that provide supportive factors for stem cells at the crypt base and promote differentiation of cells in the upper crypt and luminal surface. To study the fibroblast-epithelial cell interactions, an crypt model was formed on a shaped collagen scaffold with primary epithelial cells growing above a layer of primary colonic fibroblasts. The crypts possessed a basal stem cell niche populated with proliferative cells and a differentiated, nondividing cell zone at the luminal crypt end.
View Article and Find Full Text PDFBMC Biol
December 2024
Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, 3800, Australia.
Representative models of intestinal diseases are transforming our knowledge of the molecular mechanisms of disease, facilitating effective drug screening and avenues for personalised medicine. Despite the emergence of 3D in vitro intestinal organoid culture systems that replicate the genetic and functional characteristics of the epithelial tissue of origin, there are still challenges in reproducing the human physiological tissue environment in a format that enables functional readouts. Here, we describe the latest platforms engineered to investigate environmental tissue impacts, host-microbe interactions and enable drug discovery.
View Article and Find Full Text PDFJ Allergy Clin Immunol
December 2024
Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA. Electronic address:
Background: Heterozygous immunoproteasome subunit beta-type 10 (PSMB10) mutations can cause severe combined immunodeficiency (SCID) and Omenn syndrome (OS). Hematopoietic stem cell transplantation in these patients is associated with severe complications and poor immune reconstitution, often resulting in death.
Objective: To perform immunological and molecular characterization of an infant with a PSMB10 heterozygous variant.
Immunity
December 2024
Department of Immunology, Harvard Medical School, Boston, MA, USA. Electronic address:
Thymic mimetic cells are molecular hybrids between medullary-thymic-epithelial cells (mTECs) and diverse peripheral cell types. They are involved in eliminating autoreactive T cells and can perform supplementary functions reflective of their peripheral-cell counterparts. Current knowledge about mimetic cells derives largely from mouse models.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!