A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Models for predicting sleep latency and sleep duration. | LitMetric

Models for predicting sleep latency and sleep duration.

Sleep

Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, MD.

Published: May 2021

Study Objectives: Planning effective sleep-wake schedules for civilian and military settings depends on the ability to predict the extent to which restorative sleep is likely for a specified sleep period. Here, we developed and validated two mathematical models, one for predicting sleep latency and a second for predicting sleep duration, as decision aids to predict efficacious sleep periods.

Methods: We extended the Unified Model of Performance (UMP), a well-validated mathematical model of neurobehavioral performance, to predict sleep latency and sleep duration, which vary nonlinearly as a function of the homeostatic sleep pressure and the circadian rhythm. To this end, we used the UMP to predict the time course of neurobehavioral performance under different conditions. We developed and validated the models using experimental data from 317 unique subjects from 24 different studies, which included sleep conditions spanning the entire circadian cycle.

Results: The sleep-latency and sleep-duration models accounted for 42% and 84% of the variance in the data, respectively, and yielded acceptable average prediction errors for planning sleep schedules (4.0 min for sleep latency and 0.8 h for sleep duration). Importantly, we identified conditions under which small shifts in sleep onset timing result in disproportionately large differences in sleep duration-knowledge that may be applied to improve performance, safety, and sustainability in civilian and military operations.

Conclusions: These models extend the capabilities of existing predictive fatigue-management tools, allowing users to anticipate the most opportune times to schedule sleep periods.

Download full-text PDF

Source
http://dx.doi.org/10.1093/sleep/zsaa263DOI Listing

Publication Analysis

Top Keywords

sleep
17
sleep latency
16
sleep duration
16
predicting sleep
12
latency sleep
12
models predicting
8
civilian military
8
developed validated
8
neurobehavioral performance
8
models
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!