Objectives: The goal of this study was to investigate the association of stenosis and plaque features with myocardial ischemia and their prognostic implications.

Background: Various anatomic, functional, and morphological attributes of coronary artery disease (CAD) have been independently explored to define ischemia and prognosis.

Methods: A total of 1,013 vessels with fractional flow reserve (FFR) measurement and available coronary computed tomography angiography were analyzed. Stenosis and plaque features of the target lesion and vessel were evaluated by an independent core laboratory. Relevant features associated with low FFR (≤0.80) were identified by using machine learning, and their predictability of 5-year risk of vessel-oriented composite outcome, including cardiac death, target vessel myocardial infarction, or target vessel revascularization, were evaluated.

Results: The mean percent diameter stenosis and invasive FFR were 48.5 ± 17.4% and 0.81 ± 0.14, respectively. Machine learning interrogation identified 6 clusters for low FFR, and the most relevant feature from each cluster was minimum lumen area, percent atheroma volume, fibrofatty and necrotic core volume, plaque volume, proximal left anterior descending coronary artery lesion, and remodeling index (in order of importance). These 6 features showed predictability for low FFR (area under the receiver-operating characteristic curve: 0.797). The risk of 5-year vessel-oriented composite outcome increased with every increment of the number of 6 relevant features, and it had incremental prognostic value over percent diameter stenosis and FFR (area under the receiver-operating characteristic curve: 0.706 vs. 0.611; p = 0.031).

Conclusions: Six functionally relevant features, including minimum lumen area, percent atheroma volume, fibrofatty and necrotic core volume, plaque volume, proximal left anterior descending coronary artery lesion, and remodeling index, help define the presence of myocardial ischemia and provide better prognostication in patients with CAD. (CCTA-FFR Registry for Risk Prediction; NCT04037163).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcmg.2020.08.025DOI Listing

Publication Analysis

Top Keywords

machine learning
12
coronary artery
12
relevant features
12
low ffr
12
stenosis plaque
8
plaque features
8
myocardial ischemia
8
vessel-oriented composite
8
composite outcome
8
target vessel
8

Similar Publications

Background: Kidney tumors, common in the urinary system, have widely varying survival rates post-surgery. Current prognostic methods rely on invasive biopsies, highlighting the need for non-invasive, accurate prediction models to assist in clinical decision-making.

Purpose: This study aimed to construct a K-means clustering algorithm enhanced by Transformer-based feature transformation to predict the overall survival rate of patients after kidney tumor resection and provide an interpretability analysis of the model to assist in clinical decision-making.

View Article and Find Full Text PDF

Rib pathology is uniquely difficult and time-consuming for radiologists to diagnose. AI can reduce radiologist workload and serve as a tool to improve accurate diagnosis. To date, no reviews have been performed synthesizing identification of rib fracture data on AI and its diagnostic performance on X-ray and CT scans of rib fractures and its comparison to physicians.

View Article and Find Full Text PDF

Effect of terahertz radiation on cells and cellular structures.

Front Optoelectron

January 2025

Institute of Physics, Saratov State University, Saratov, 410012, Russia.

The paper presents the results of modern research on the effects of electromagnetic terahertz radiation in the frequency range 0.5-100 THz at different levels of power density and exposure time on the viability of normal and cancer cells. As an accompanying tool for monitoring the effect of radiation on biological cells and tissues, spectroscopic research methods in the terahertz frequency range are described, and attention is focused on the possibility of using the spectra of interstitial water as a marker of pathological processes.

View Article and Find Full Text PDF

Cognitive resilience (CR) describes the phenomenon of individuals evading cognitive decline despite prominent Alzheimer's disease neuropathology. Operationalization and measurement of this latent construct is non-trivial as it cannot be directly observed. The residual approach has been widely applied to estimate CR, where the degree of resilience is estimated through a linear model's residuals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!