An estimated 400 million people are infected by parasites of the genus Ascaris and the existing control measures are inefficient. Vaccine development using B cell antigens is a promising strategy for increased protection against this parasite. The present study aimed at developing a chimeric protein capable of conferring protection against infection by Ascaris sp. For this purpose, we performed B-cell epitope predictions on previously described vaccine candidate proteins from Ascaris suum and the corresponding peptides were used to construct a chimeric protein. Female BALB / c mice were immunized subcutaneously in three doses at 10 day intervals with a vaccine formulation comprised of the chimeric protein together with monophosphoryl lipid A (MPLA). Control groups included protein alone, MPLA, or PBS. After challenge infection, animals vaccinated with chimeric protein plus MPLA showed a reduction of 73.54% of larval load in the lung compared to control group animals. Animals immunized with chimeric protein plus MPLA also display higher IgG response and a reduction in lung inflammation. Our study highlights how chimeric proteins containing more than one B cell epitope can enhance immune protection against helminthic infection and offer new approaches to the development of Ascaris vaccines.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.vaccine.2020.11.046 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!