Immune, inflammatory, autophagic and DNA damage responses to long-term HO exposure in different tissues of common carp (Cyprinus carpio).

Sci Total Environ

Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China. Electronic address:

Published: February 2021

Hydrogen peroxide (HO) is a stable reactive oxygen species (ROS) in aquatic environment, and high concentration of ambient HO may directly or indirectly affect aquatic animal health. However, the response mechanism of fish to ambient HO has not been well studied yet. Therefore, the aim of the study was to investigate the immune, inflammatory, autophagic and DNA damage responses to long-term HO exposure in different tissues of common carp. The results showed that HO exposure induced a significant immune response, with alterations in the levels of immune parameters including AKP, ACP, LZM, C3, HSP90 and HSP70 in different tissues. The inflammatory response evoked by HO exposure was associated with the activations of TLRs and NF-κB (P65) in the majority of tested tissues. The autophagy process was significantly affected by HO exposure, evidenced by the upregulations of the autophagy-related genes in liver, gills, muscle, intestines, heart and spleen and the downregulations in kidney. Meanwhile, the mRNA level of atm, a primary transducer of DNA damage response, was upregulated in liver, gills, intestines and spleen, and the DNA damage was evidenced by increased 8-OHdG level in intestines after HO exposure. Moreover, cell cycle regulation-related genes, including cyclin A1, B and/or E1, highly expressed in all tested tissues except heart after HO exposure. Interestingly, IBR analysis exhibited that immune, inflammatory, autophagic and DNA damage responses to HO exposure were in a dose-dependent and tissue-specific manner. These data may contribute to understanding HO toxicity for fish and assessing potential risk of HO in aquatic environment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2020.143831DOI Listing

Publication Analysis

Top Keywords

dna damage
20
immune inflammatory
12
inflammatory autophagic
12
autophagic dna
12
damage responses
12
responses long-term
8
exposure
8
long-term exposure
8
exposure tissues
8
tissues common
8

Similar Publications

Anaerobic probiotics-in situ Se nanoradiosensitizers selectively anchor to tumor with immuno-regulations for robust cancer radio-immunotherapy.

Biomaterials

January 2025

Department of Pharmacy of Puning People's Hospital (Guangdong Postdoctoral Innovation Practice Base of Jinan University), Department of Chemistry, State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangdong, 510632, China. Electronic address:

Developing translational nanoradiosensitizers with multiple activities in sensitizing tumor cells and re-shaping tumor immunosuppressive microenvironments are urgently desired for addressing the poor therapeutic efficacy of radiotherapy in clinic. Inspired by the anaerobic and immunoagonist properties of the probiotic (bifidobacterium longum, BL), herein, a biomimetic Selenium nanoradiosensitizer in situ-formed on the surface of the probiotic (BL@SeNPs) is developed in a facile method to potentiate radiotherapy. BL@SeNPs selectively target to hypoxia regions of tumors and then anchor on the surface of tumor cells to inhibit its proliferation.

View Article and Find Full Text PDF

DNA damage triggers heritable alterations in DNA methylation patterns in Arabidopsis.

Mol Plant

January 2025

State Key Laboratory of Wheat Improvement, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China; Beijing Life Science Academy, Beijing 102299, China. Electronic address:

It has been hypothesized that DNA damage has the potential to induce DNA hypermethylation, contributing to carcinogenesis in mammals. However, there is no sufficient evidence to support that DNA damage can cause genome-wide DNA hypermethylation. Here, we demonstrated that DNA single-strand breaks with 3'-blocked ends (DNA 3'-blocks) can not only reinforce DNA methylation at normally methylated loci but also can induce DNA methylation at normally nonmethylated loci in plants.

View Article and Find Full Text PDF

Purpose: Prior sperm DNA fragmentation index (DFI) thresholds for diagnosing male infertility and predicting assisted reproduction technology (ART) outcomes fluctuated between 15 and 30%, with no agreed standard. This study aimed to evaluate the impact of the sperm DFI on early embryonic development during ART treatments and establish appropriate DFI cut-off values.

Methods: Retrospectively analyzed 913 couple's ART cycles from 2021 to 2022, encompassing 1,476 IVF and 295 ICSI cycles, following strict criteria.

View Article and Find Full Text PDF

Background: Ovarian cancer (OC), particularly high-grade serous ovarian carcinoma (HGSOC), is the leading cause of mortality from gynecological malignancies worldwide. Despite the initial effectiveness of treatment, acquired resistance to poly(ADP-ribose) polymerase inhibitors (PARPis) represents a major challenge for the clinical management of HGSOC, highlighting the necessity for the development of novel therapeutic strategies. This study investigated the role of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3), a pivotal regulator of glycolysis, in PARPi resistance and explored its potential as a therapeutic target to overcome PARPi resistance.

View Article and Find Full Text PDF

The role of Box A of HMGB1 in producing γH2AX associated DNA breaks in lung cancer.

Sci Rep

January 2025

Center of Excellence in Molecular Genetics of Cancer and Human Diseases, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Bangkok, Thailand.

An ideal chemotherapeutic agent damages DNA, specifically in cancer cells, without harming normal cells. Recently, we used Box A of HMGB1 plasmid as molecular scissors to produce DNA gaps in normal cells. The DNA gap relieves DNA tension and increases DNA strength, preventing DNA double-strand breaks (DSBs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!