Response to: Noninstrumented posterolateral lumbar fusion and allograft.

Spine J

Center for Spine Surgery & Research, Middelfart Hospital, Middelfart, Denmark.

Published: December 2020

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.spinee.2020.08.014DOI Listing

Publication Analysis

Top Keywords

response noninstrumented
4
noninstrumented posterolateral
4
posterolateral lumbar
4
lumbar fusion
4
fusion allograft
4
response
1
posterolateral
1
lumbar
1
fusion
1
allograft
1

Similar Publications

Offshore wind-turbine (OWT) support structures are subjected to cyclic dynamic loads with variations in loadings from wind and waves as well as the rotation of blades throughout their lifetime. The magnitude and extent of the cyclic loading can create a fatigue limit state controlling the design of support structures. In this paper, the remaining fatigue life of the support structure for a GE Haliade 6 MW fixed-bottom jacket offshore wind turbine within the Block Island Wind Farm (BIWF) is assessed.

View Article and Find Full Text PDF

Purpose: Multiple sclerosis (MS) is a multifocal demyelinating disease that affects the central nervous system (CNS) and commonly leads to neurogenic lower urinary tract dysfunction (NLUTD). Proper storage and release of urine relies on synchronized activity of the LUT, which is meticulously regulated by supraspinal circuits, making it vulnerable to diseases such as MS. NLUTD, characterized by voiding dysfunction (VD), storage issues, or a combination of both is a common occurrence in MS.

View Article and Find Full Text PDF

Background: Supraphysiologic bone morphogenetic protein (BMP)-2 concentrations are required to induce spinal fusion. In this study, a BMP-2/BMP-6/activin A chimera (BV-265), optimized for BMP receptor binding, delivered in a recombinant human collagen:CDHA [calcium-deficient hydroxyapatite] porous composite matrix (CM) or bovine collagen:CDHA granule porous composite matrix (PCM), engineered for optimal BV-265 retention and guided tissue repair, was compared with BMP-2 delivered in a bovine absorbable collagen sponge (ACS) wrapped around a MASTERGRAFT Matrix (MM) ceramic-collagen rod (ACS:MM) in a nonhuman primate noninstrumented posterolateral fusion (PLF) model.

Methods: In vivo retention of 125I-labeled-BV-265/CM or PCM was compared with 125I-labeled-BMP-2/ACS or BMP-2/buffer in a rat muscle pouch model using scintigraphy.

View Article and Find Full Text PDF

Successful use of an artificial placenta to support extremely preterm ovine fetuses at the border of viability.

Am J Obstet Gynecol

July 2019

Division of Obstetrics and Gynecology, University of Western Australia, Crawley, Western Australia, Australia; Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Miyagi, Japan; School of Veterinary and Life Sciences, Murdoch University, Western Australia, Australia.

Background: Ex vivo uterine environment therapy is an experimental life support platform designed to reduce the risk of morbidity and mortality for extremely preterm infants born at the border of viability (21-24 weeks' gestation). To spare the functionally immature lung, this platform performs gas exchange via a membranous oxygenator connected to the umbilical vessels, and the fetus is submerged in a protective bath of artificial amniotic fluid. We and others have demonstrated the feasibility of extended survival with ex vivo uterine environment therapy therapy in late preterm fetuses; however, there is presently no evidence to show that the use of such a platform can support extremely preterm fetuses, the eventual translational target for therapy of this nature.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!