Background: The number of oblique lumbar interbody fusion (OLIF) procedures has continued to rise over recent years. Adjacent segment degeneration (ASD) is a common complication following vertebral body fusion. Although the precise mechanism remains uncertain, ASD has gradually become more common in OLIF. Therefore, the present study analyzed the association between disc degeneration and OLIF to explore whether adjacent degeneration was promoted by OLIF in degenerative disc disease.

Methods: A three-dimensional nonlinear finite element (FE) model of the L3-S1 lumbar spine was developed and validated. Three lumbar spine degeneration models with different degrees of degeneration (mild, moderate and severe) and a model of OLIF surgery were constructed at the L4-L5 level. When subjected to a follower compressive load (500 N), hybrid moment loading was applied to all models of the lumbar spine and the range of motion (ROM), intradiscal pressure (IDP), facet joint force (FJF), average mises stress in the annulus (AMSA), average tresca stress in the annulus (ATSA) and average endplate stress (AES) were measured.

Results: Compared with the healthy lumbar spine model, the ROM, IDP, FJF, AMSA, ATSA and AES of the segments adjacent to the degenerated segment increased in each posture as the degree of disc degeneration increased. In different directions of motion, the ROM, IDP, FJF, AMSA, ATSA and AES in the OLIF model in the L3-L4 and L5-S1 segments were higher than those of the healthy model and each degenerated model. Compared with the healthy model, the largest relative increase in biomechanical parameters above (ROM, IDP, FJF, AMSA, ATSA or AES) was observed in the L3-L4 segment in the OLIF model, of 77.13%, 32.63%, 237.19%, 45.36%, 110.92% and 80.28%, respectively. In the L5-S1 segment the corresponding values were 68.88%, 36.12%, 147.24%, 46.00%, 45.88% and 51.29%, respectively.

Conclusions: Both degenerated discs and OLIF surgery modified the pattern of motion and load distribution of adjacent segments (L3-L4 and L5-S1 segments). The increases in the biomechanical parameters of segments adjacent to the surgical segment in the OLIF model were more apparent than those of the degenerated models. In summary, OLIF risked accelerating the degeneration of segments adjacent to those of a surgical segment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiomed.2020.104122DOI Listing

Publication Analysis

Top Keywords

lumbar spine
16
rom idp
12
idp fjf
12
fjf amsa
12
amsa atsa
12
atsa aes
12
segments adjacent
12
olif model
12
olif
10
model
9

Similar Publications

Background: Delta large-channel endoscopy and unilateral biportal endoscopy (UBE) are prominent minimally invasive techniques for treating lumbar spinal stenosis, known for minimal tissue damage, clear visualization, and quick recovery. However, rigorous controlled research comparing these procedures is scarce, necessitating further investigation into their respective complications and long-term effectiveness. This randomized controlled trial aims to compare their perioperative outcomes, focusing on postoperative recovery and complications over time.

View Article and Find Full Text PDF

Ferristatin II protects nucleus pulposus against degeneration through inhibiting ferroptosis and activating HIF-1α pathway mediated mitophagy.

Int Immunopharmacol

January 2025

Department of Spine Surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong 250000, China; Department of Spine Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250000, China. Electronic address:

Background: Nucleus pulposus (NP) degeneration represents a significant contributing factor in the pathogenesis of intervertebral disc (IVD) degeneration (IVDD), and is a key underlying mechanism in several lumbar spine pathologies. Nevertheless, the precise mechanisms that govern NP degeneration remain unclear. A significant contributing factor to IVDD has been identified as ferroptosis.

View Article and Find Full Text PDF

Objective: The objective of this study was to assess the complicated relationship between frailty, perioperative complications, and patient-reported outcomes (PROs) in elderly patients (≥ 75 years old) undergoing lumbar spine fusion (LSF).

Methods: Consecutive patients who underwent LSF between March 2019 and December 2021 were recruited in this study. Frail patients (modified frailty index [mFI] score ≥ 2) were propensity score matched to nonfrail patients (mFI score 0-1) on the basis of age, sex, and the number of fused levels.

View Article and Find Full Text PDF

Demographic aging and extended working lives have prompted interest in the physiological changes that occur with age, particularly in the lumbar spine. Age-related declines in muscle quality and intervertebral disc alterations may reduce muscular endurance, strength, and postural stability, potentially increasing the risk of musculoskeletal injuries in older workers. As experienced workers play an important role in addressing labor shortages, understanding the impact of age-related physiological changes on the biomechanical properties of the lumbar spine is key to ensure safe and sustainable employment for aging individuals.

View Article and Find Full Text PDF

Purpose: We sought to evaluate the incidence, natural history, and management of cystic spinal lesions following myelomeningocele/myeloschisis closure.

Methods: We performed a single-center retrospective review of all patients who underwent myelomeningocele/myeloschisis closure from 2013 to 2018 with follow-up to 5 years old.

Results: We analyzed 100 fetal repairs and 81 postnatal closures from 305 total surgeries.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!