Background: The number of oblique lumbar interbody fusion (OLIF) procedures has continued to rise over recent years. Adjacent segment degeneration (ASD) is a common complication following vertebral body fusion. Although the precise mechanism remains uncertain, ASD has gradually become more common in OLIF. Therefore, the present study analyzed the association between disc degeneration and OLIF to explore whether adjacent degeneration was promoted by OLIF in degenerative disc disease.
Methods: A three-dimensional nonlinear finite element (FE) model of the L3-S1 lumbar spine was developed and validated. Three lumbar spine degeneration models with different degrees of degeneration (mild, moderate and severe) and a model of OLIF surgery were constructed at the L4-L5 level. When subjected to a follower compressive load (500 N), hybrid moment loading was applied to all models of the lumbar spine and the range of motion (ROM), intradiscal pressure (IDP), facet joint force (FJF), average mises stress in the annulus (AMSA), average tresca stress in the annulus (ATSA) and average endplate stress (AES) were measured.
Results: Compared with the healthy lumbar spine model, the ROM, IDP, FJF, AMSA, ATSA and AES of the segments adjacent to the degenerated segment increased in each posture as the degree of disc degeneration increased. In different directions of motion, the ROM, IDP, FJF, AMSA, ATSA and AES in the OLIF model in the L3-L4 and L5-S1 segments were higher than those of the healthy model and each degenerated model. Compared with the healthy model, the largest relative increase in biomechanical parameters above (ROM, IDP, FJF, AMSA, ATSA or AES) was observed in the L3-L4 segment in the OLIF model, of 77.13%, 32.63%, 237.19%, 45.36%, 110.92% and 80.28%, respectively. In the L5-S1 segment the corresponding values were 68.88%, 36.12%, 147.24%, 46.00%, 45.88% and 51.29%, respectively.
Conclusions: Both degenerated discs and OLIF surgery modified the pattern of motion and load distribution of adjacent segments (L3-L4 and L5-S1 segments). The increases in the biomechanical parameters of segments adjacent to the surgical segment in the OLIF model were more apparent than those of the degenerated models. In summary, OLIF risked accelerating the degeneration of segments adjacent to those of a surgical segment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.compbiomed.2020.104122 | DOI Listing |
J Orthop Surg Res
January 2025
Center of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
Background: Delta large-channel endoscopy and unilateral biportal endoscopy (UBE) are prominent minimally invasive techniques for treating lumbar spinal stenosis, known for minimal tissue damage, clear visualization, and quick recovery. However, rigorous controlled research comparing these procedures is scarce, necessitating further investigation into their respective complications and long-term effectiveness. This randomized controlled trial aims to compare their perioperative outcomes, focusing on postoperative recovery and complications over time.
View Article and Find Full Text PDFInt Immunopharmacol
January 2025
Department of Spine Surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong 250000, China; Department of Spine Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250000, China. Electronic address:
Background: Nucleus pulposus (NP) degeneration represents a significant contributing factor in the pathogenesis of intervertebral disc (IVD) degeneration (IVDD), and is a key underlying mechanism in several lumbar spine pathologies. Nevertheless, the precise mechanisms that govern NP degeneration remain unclear. A significant contributing factor to IVDD has been identified as ferroptosis.
View Article and Find Full Text PDFObjective: The objective of this study was to assess the complicated relationship between frailty, perioperative complications, and patient-reported outcomes (PROs) in elderly patients (≥ 75 years old) undergoing lumbar spine fusion (LSF).
Methods: Consecutive patients who underwent LSF between March 2019 and December 2021 were recruited in this study. Frail patients (modified frailty index [mFI] score ≥ 2) were propensity score matched to nonfrail patients (mFI score 0-1) on the basis of age, sex, and the number of fused levels.
PLoS One
January 2025
Department of Human Kinetics, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada.
Demographic aging and extended working lives have prompted interest in the physiological changes that occur with age, particularly in the lumbar spine. Age-related declines in muscle quality and intervertebral disc alterations may reduce muscular endurance, strength, and postural stability, potentially increasing the risk of musculoskeletal injuries in older workers. As experienced workers play an important role in addressing labor shortages, understanding the impact of age-related physiological changes on the biomechanical properties of the lumbar spine is key to ensure safe and sustainable employment for aging individuals.
View Article and Find Full Text PDFChilds Nerv Syst
January 2025
Division of Neurosurgery, Department of Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
Purpose: We sought to evaluate the incidence, natural history, and management of cystic spinal lesions following myelomeningocele/myeloschisis closure.
Methods: We performed a single-center retrospective review of all patients who underwent myelomeningocele/myeloschisis closure from 2013 to 2018 with follow-up to 5 years old.
Results: We analyzed 100 fetal repairs and 81 postnatal closures from 305 total surgeries.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!