Over the past decade there has been an enormous progress in our understanding of fluid and solute transport in the central nervous system (CNS). This is due to a number of factors, including important developments in whole brain imaging technology and computational fluid dynamics analysis employed for the elucidation of glymphatic transport function in the live animal and human brain. In this paper, we review the technical aspects of dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) in combination with administration of Gd-based tracers into the cerebrospinal fluid (CSF) for tracking glymphatic solute and fluid transport in the CNS as well as lymphatic drainage. Used in conjunction with advanced computational processing methods including optimal mass transport analysis, one gains new insights into the biophysical forces governing solute transport in the CNS which leads to intriguing new research directions. Considering drainage pathways, we review the novel T1 mapping technique for quantifying glymphatic transport and cervical lymph node drainage concurrently in the same subject. We provide an overview of knowledge gleaned from DCE-MRI studies of glymphatic transport and meningeal lymphatic drainage. Finally, we introduce positron emission tomography (PET) and CSF administration of radiotracers as an alternative method to explore other pharmacokinetic aspects of CSF transport into brain parenchyma as well as efflux pathways.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8149482PMC
http://dx.doi.org/10.1016/j.neuroscience.2020.11.014DOI Listing

Publication Analysis

Top Keywords

solute transport
12
glymphatic transport
12
transport
9
cerebrospinal fluid
8
fluid solute
8
transport cns
8
lymphatic drainage
8
glymphatic
5
fluid
5
glymphatic cerebrospinal
4

Similar Publications

As humans age, they experience deformity and a decrease in their bone strength, such brittleness in the bones ultimately lead to bone fracture. Magnetic field exposure combined with physical exercise may be useful in mitigating age-related bone loss by improving the canalicular fluid motion within the bone's lacuno-canalicular system (LCS). Nevertheless, an adequate amount of fluid induced shear stress is necessary for the bone mechano-transduction and solute transport in the case of brittle bone diseases.

View Article and Find Full Text PDF

Hydrogen (H), as a high-energy-density molecule, offers a clean solution to carry energy. However, the high diffusivity and low volumetric density of H pose a challenge for long-term storage and transportation. Liquid organic hydrogen carriers (LOHCs) have been suggested as a strategic way to store and transport hydrogen in stable molecules.

View Article and Find Full Text PDF

Maternal immune activation alters the GABAergic system in the prefrontal cortex of female rat offspring: Role of interleukin-6.

Neuroscience

January 2025

Department of Physiology, College of Medicine, Health Sciences Centre, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait. Electronic address:

Maternal immune activation (MIA) induces long-term cognitive impairments by modulating the gamma-aminobutyric acid (GABA)ergic system. Experimental evidence suggests that maternal immune challenge with bacterial active ingredient lipopolysaccharide (LPS) reduces GABAergic tone in the offspring's prefrontal cortex. In this study, we aimed to assess whether interleukin-6 (IL-6) contributes to this reduced GABAergic system in the prefrontal cortex of juvenile offspring.

View Article and Find Full Text PDF

Application of bio-electrochemical systems for phosphorus resource recovery: Progress and prospects.

J Environ Manage

January 2025

School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China. Electronic address:

This review focuses on applying bio-electrochemical systems (BES) for phosphorus (P) recovery. Microbial fuel cells (MFCs) degrade pollutants to generate electricity and recover P, with the structure and electrode materials playing a significant role in P recovery efficiency. Microbial electrolysis cells (MECs) recover P while simultaneously producing hydrogen or methane, with factors such as voltage and pH influencing performance.

View Article and Find Full Text PDF

Construction of Nanocellulose Aerogels with Environmental Drying Strategy without Organic Solvent Displacement for High-Efficiency Solar Steam Generation.

ACS Nano

January 2025

Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), National Forest and Grass Administration Woody Spices (East China) Engineering Technology Research Center, Beijing Forestry University, Beijing 100083, China.

Solar desalination is one of the effective means to alleviate water scarcity, in which aerogel-like evaporators have attracted extensive attention in the field of efficient desalination. However, the current preparation methods for aerogels still mainly rely on high-cost solutions, such as freeze-drying or supercritical drying. Herein, a preparation scheme for aerogels that can be realized under atmospheric pressure conditions is reported.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!