Carbon tetrachloride (CCl ) causes hepatotoxicity in mammals, with its hepatocytic metabolism producing radicals that attack the intracellular membrane system and destabilize intracellular vesicle transport. Inhibition of intracellular transport causes lipid droplet retention and abnormal protein distribution. The intracellular transport of synthesized lipids and proteins from the endoplasmic reticulum (ER) to the Golgi apparatus is performed by coat complex II (COPII) vesicle transport, but how CCl inhibits COPII vesicle transport has not been elucidated. COPII vesicle formation on the ER membrane is initiated by the recruitment of Sar1 protein from the cytoplasm to the ER membrane, followed by that of the COPII coat constituent proteins (Sec23, Sec24, Sec13, and Sec31). In this study, we evaluated the effect of CCl on COPII vesicle formation using the RLC-16 rat hepatocyte cell line. Our results showed that CCl suppressed ER-Golgi transport in RLC-16 cells. Using a reconstituted system of rat liver tissue-derived cytoplasm and RLC-16 cell-derived ER membranes, CCl treatment inhibited the recruitment of Sar1 and Sec13 from the cytosolic fraction to ER membranes. CCl -induced changes in the ER membrane accordingly inhibited the accumulation of COPII vesicle-coated constituent proteins on the ER membrane, as well as the formation of COPII vesicles, which suppressed lipid and protein transport between the ER and Golgi apparatus. Our data suggest that CCl inhibits ER-Golgi intracellular transport by inhibiting COPII vesicle formation on the ER membrane in hepatocytes.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cbin.11510DOI Listing

Publication Analysis

Top Keywords

copii vesicle
24
vesicle formation
16
formation membrane
12
vesicle transport
12
intracellular transport
12
transport
9
copii
9
carbon tetrachloride
8
er-golgi transport
8
transport inhibiting
8

Similar Publications

Multifunctional Roles of Sec13 Paralogues in the Euglenozoan .

bioRxiv

December 2024

Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, 955 Main Street, Buffalo NY 14203.

Secretory cargos are exported from the ER via COPII coated vesicles that have an inner matrix of Sec23/Sec24 heterotetramers and an outer cage of Sec13/Sec31 heterotetramers. In addition to COPII, Sec13 is part of the nuclear pore complex (NPC) and the regulatory SEA/GATOR complex in eukaryotes, which typically have one Sec13 orthologue. The kinetoplastid parasite has two paralogues: TbSec13.

View Article and Find Full Text PDF

Protein secretion is an essential process that drives cell growth and communication. Enrichment of soluble secretory proteins into ER-derived transport carriers occurs via transmembrane cargo receptors that connect lumenal cargo to the cytosolic COPII coat. Here, we find that the cargo receptor, SURF4, recruits different SEC24 cargo adaptor paralogs of the COPII coat to export different cargoes.

View Article and Find Full Text PDF

TMEM39A and TMEM131 facilitate bulk transport of ECM proteins through large COPII vesicle formation.

J Genet Genomics

November 2024

Cancer Metastasis Branch, Research Institute, National Cancer Center, 323 Ilsan-ro, Goyang-si, Gyeonggi-do, 10408, Republic of Korea. Electronic address:

The growth of Caenorhabditis elegans involves multiple molting processes, during which old cuticles are shed and new cuticles are rapidly formed. This process requires the regulated bulk secretion of cuticle components. The transmembrane protein-39 (TMEM-39) mutant exhibits distinct dumpy and ruptured phenotypes characterized by notably thin cuticles.

View Article and Find Full Text PDF

Cryo-electron tomography reveals how COPII assembles on cargo-containing membranes.

Nat Struct Mol Biol

November 2024

Institute of Structural and Molecular Biology, Birkbeck College, London, UK.

Proteins traverse the eukaryotic secretory pathway through membrane trafficking between organelles. The coat protein complex II (COPII) mediates the anterograde transport of newly synthesized proteins from the endoplasmic reticulum, engaging cargoes with a wide range of size and biophysical properties. The native architecture of the COPII coat and how cargo might influence COPII carrier morphology remain poorly understood.

View Article and Find Full Text PDF

Thrombopoietin (TPO) is a plasma glycoprotein that binds its receptor on megakaryocytes (MKs) and MK progenitors, resulting in enhanced platelet production. The mechanism by which TPO is secreted from hepatocytes remains poorly understood. Lectin mannose-binding 1 (LMAN1) and multiple coagulation factor deficiency 2 (MCFD2) form a complex at the endoplasmic reticulum membrane, recruiting cargo proteins into COPII vesicles for secretion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!