Closely related phytophagous insects that specialize on different host plants may have divergent responses to environmental factors. Rhagoletis pomonella (Walsh) and Rhagoletis zephyria Snow (Diptera: Tephritidae) are sibling, sympatric fly species found in western North America that attack and mate on plants of Rosaceae (~60 taxa) and Caprifoliaceae (three taxa), respectively, likely contributing to partial reproductive isolation. Rhagoletis zephyria evolved from R. pomonella and is native to western North America, whereas R. pomonella was introduced there. Given that key features of the flies' ecology, breeding compatibility, and evolution differ, we predicted that adult eclosion patterns of the two flies from Washington State, USA are also distinct. When puparia were chilled, eclosion of apple- and black hawthorn-origin R. pomonella was significantly more dispersed, with less pronounced peaks, than of snowberry-origin R. zephyria within sympatric and nonsympatric site comparisons. Percentages of chilled puparia that produced adults were ≥67% for both species. However, when puparia were not chilled, from 13.5 to 21.9% of apple-origin R. pomonella versus only 1.2% to 1.9% of R. zephyria eclosed. The distinct differences in eclosion traits of R. pomonella and R. zephyria could be due to greater genetic variation in R. pomonella, associated with its use of a wider range of host plants than R. zephyria.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/ee/nvaa148 | DOI Listing |
Environ Entomol
April 2022
Department of Biological Sciences, Galvin Life Sciences Building, University of Notre Dame, Notre Dame, IN 46556, USA.
Seasonal temperatures select for eclosion timing of temperate insects and their parasitoids. In western North America, the fruit fly Rhagoletis zephyria Snow (Diptera: Tephritidae) is parasitized by the hymenopterous wasps Utetes lectoides (Gahan), an egg parasite, and Opius downesi Gahan, a larval parasite (both Braconidae). Eclosion of wasps should be timed with the presence of susceptible fly stages, but reports indicate U.
View Article and Find Full Text PDFJ Econ Entomol
April 2022
Plant Protection Division, Washington State Department of Agriculture, 21 North 1st Avenue Suite 103, Yakima, WA 98902, USA.
The apple maggot, Rhagoletis pomonella (Walsh), was introduced into the apple-growing regions of the Pacific Northwest in the U.S.A.
View Article and Find Full Text PDFEnviron Entomol
February 2021
Department of Biological Sciences, Galvin Life Sciences Bldg., University of Notre Dame, Notre Dame, IN.
Closely related phytophagous insects that specialize on different host plants may have divergent responses to environmental factors. Rhagoletis pomonella (Walsh) and Rhagoletis zephyria Snow (Diptera: Tephritidae) are sibling, sympatric fly species found in western North America that attack and mate on plants of Rosaceae (~60 taxa) and Caprifoliaceae (three taxa), respectively, likely contributing to partial reproductive isolation. Rhagoletis zephyria evolved from R.
View Article and Find Full Text PDFEnviron Entomol
December 2017
Department of Entomology, NYS Agricultural Experiment Station, Cornell University, Geneva, NY 14456.
Rhagoletis zephyria Snow and Rhagoletis pomonella (Walsh) (Diptera: Tephritidae) are morphologically similar flies that attack white-colored snowberry fruit (Symphoricarpos spp.) and yellow/red or dark-colored apple/hawthorn fruit (Malus/Crataegus spp.), respectively.
View Article and Find Full Text PDFJ Chem Ecol
February 2017
Department of Entomology, NYS Agricultural Experiment Station, Cornell University, Geneva, NY, 14456, USA.
A mixture of behaviorally active volatiles was identified from the fruit of snowberry, Symphoricarpos albus laevigatus, for Rhagoletis zephyria flies reared from snowberry fruit. A nine-component blend containing 3-methylbutan-1-ol (3%), dimethyl trisulfide (1%), 1-octen-3-ol (40%), myrcene (8%), nonanal (9%), linalool (13%), (3E)-4,8-dimethyl-1,3,7-nonatriene (DMNT, 6%), decanal (15%), and β-caryophyllene (5%) was identified that gave consistent electroantennogram activity and was behaviorally active in flight tunnel tests. In other flight tunnel assays, snowberry flies from two sites in Washington state, USA, displayed significantly greater levels of upwind oriented flight to sources with the snowberry volatile blend compared with previously identified volatile blends from domestic apple (Malus domestica) and downy hawthorn (Crataegus mollis) fruit from the eastern USA, and domestic apple, black hawthorn (C.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!