Norway spruce has a broad natural distribution range, which results in a substantial variety of its physiological and genetic variation. There are three distinct altitudinal ecotypes described in this tree species. The physiological optimum of each ecotype may be shifted due to ongoing climate change, especially in traits associated with water demand that might be crucial for adaptation. Dehydrins are proteins that help to mitigate the adverse effects of dehydration. Dehydrin gene expression patterns appeared to be a suitable marker for plant stress assessment. Genetically determined differences in response between individuals and populations were formerly studied, however, mainly in controlled conditions. We evaluated ecotypic variation in dehydrin gene expression in a clonal bank comprised of all three ecotypes. A genetic relationship among targeted trees was uncovered utilizing GBS (Genotyping by Sequencing) platform. We sampled 4-6 trees of each ecotype throughout 15 months period. Subsequently, we assessed the RNA expression of dehydrin genes by qRT-PCR. For this study, we deliberately selected dehydrins from different categories. Our findings detected significant differences among ecotypes in dehydrin expression. The association of recorded climatic variables and individual gene expression across the study period was evaluated and revealed, for certain genes, a correlation between dehydrin gene expression and precipitation, temperature, and day-length.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7695824 | PMC |
http://dx.doi.org/10.1038/s41598-020-76900-x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!