AI Article Synopsis

  • Vibrio cholerae, which causes cholera, has a curved rod shape that aids its infectivity and movement in dense environments.
  • The small RNA VadR regulates the gene crvA responsible for this curvature; mutations to vadR lead to increased cell curvature, while overexpression reduces it.
  • VadR is activated by the VxrAB system and is crucial for maintaining cell shape, antibiotic resistance, and inhibiting biofilm formation in V. cholerae.

Article Abstract

Vibrio cholerae, the cause of cholera disease, exhibits a characteristic curved rod morphology, which promotes infectivity and motility in dense hydrogels. Periplasmic protein CrvA determines cell curvature in V. cholerae, yet the regulatory factors controlling CrvA are unknown. Here, we discover the VadR small RNA (sRNA) as a post-transcriptional inhibitor of the crvA mRNA. Mutation of vadR increases cell curvature, whereas overexpression has the inverse effect. We show that vadR transcription is activated by the VxrAB two-component system and triggered by cell-wall-targeting antibiotics. V. cholerae cells failing to repress crvA by VadR display decreased survival upon challenge with penicillin G indicating that cell shape maintenance by the sRNA is critical for antibiotic resistance. VadR also blocks the expression of various key biofilm genes and thereby inhibits biofilm formation in V. cholerae. Thus, VadR is an important regulator for synchronizing peptidoglycan integrity, cell shape, and biofilm formation in V. cholerae.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7695739PMC
http://dx.doi.org/10.1038/s41467-020-19890-8DOI Listing

Publication Analysis

Top Keywords

cell shape
12
antibiotic resistance
8
vibrio cholerae
8
cell curvature
8
biofilm formation
8
formation cholerae
8
cholerae
6
vadr
6
cell
5
rna-mediated control
4

Similar Publications

Microfluidic vessel-on-chip platform for investigation of cellular defects in venous malformations and responses to various shear stress and flow conditions.

Lab Chip

January 2025

Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, P.O. Box 5000, FI-90014 Oulu, Finland.

A novel microfluidic platform was designed to study the cellular architecture of endothelial cells (ECs) in an environment replicating the 3D organization and flow of blood vessels. In particular, the platform was constructed to investigate EC defects in slow-flow venous malformations (VMs) under varying shear stress and flow conditions. The platform featured a standard microtiter plate footprint containing 32 microfluidic units capable of replicating wall shear stress (WSS) in normal veins and enabling precise control of shear stress and flow directionality without the need for complex pumping systems.

View Article and Find Full Text PDF

Advances in magnetic nanoparticles for molecular medicine.

Chem Commun (Camb)

January 2025

F. Joseph Halcomb III, M. D. Department of Biomedical Engineering, University of Kentucky, Lexington, Kentucky 40536, USA.

Magnetic nanoparticles (MNPs) are highly versatile nanomaterials in nanomedicine, owing to their diverse magnetic properties, which can be tailored through variations in size, shape, composition, and exposure to inductive magnetic fields. Over four decades of research have led to the clinical approval or ongoing trials of several MNP formulations, fueling continued innovation. Beyond traditional applications in drug delivery, imaging, and cancer hyperthermia, MNPs have increasingly advanced into molecular medicine.

View Article and Find Full Text PDF

Purpose: This multicenter study aimed to investigate the clinical characteristics and factors associated with specific viral pathogens in patients with acute retinal necrosis (ARN).

Methods: A retrospective multicenter cohort study included ARN patients who underwent aqueous or vitreous polymerase chain reaction (PCR) testing. Multivariable mixed-effects Poisson regression was used to identify factors associated with viral pathogens.

View Article and Find Full Text PDF

Neutrophils, the most abundant circulating leukocytes, have long been recognized as key players in innate immunity and inflammation. However, recent discoveries unveil their remarkable heterogeneity and plasticity, challenging the traditional view of neutrophils as a homogeneous population with a limited functional repertoire. Advances in single-cell technologies and functional assays have revealed distinct neutrophil subsets with diverse phenotypes and functions and their ability to adapt to microenvironmental cues.

View Article and Find Full Text PDF

Background And Objective: We evaluated the effectiveness of injecting autologous adipose-derived regenerative cells (ADRCs) into plaque in men with chronic Peyronie's disease (PD).

Methods: This pilot safety study recruited 22 Danish men with chronic PD from an outpatient clinic. Patients received one bolus of ADRCs injected into plaque, with follow-ups at 1, 3, 6, and 12 mo.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!