Energy metabolism profile of the effects of amino acid treatment on hepatocytes: Phenylalanine and phenylpyruvate inhibit glycolysis of hepatocytes.

Nutrition

Department of Agrobiology and Bioresources, Utsunomiya University, Tochigi, Japan; Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo, Japan. Electronic address:

Published: February 2021

Objectives: Amino acids are not only the building blocks of proteins, but also can be metabolized to energy substances or function as signaling molecules. The aim of this study was to profile whether amino acid treatment (essential amino acids and alanine) affects the energy metabolism (glycolysis, mitochondrial respiration) of cultured hepatocytes.

Methods: AML12 hepatocytes were treated with 5 mM of each amino acid for 1 h and the energy metabolism was then measured by using an extracellular flux analyzer.

Results: The results showed that phenylalanine and lysine decreased the extracellular acidification rate (ECAR), an indirect indicator of glycolysis, whereas isoleucine and histidine increased the ECAR. Amino acids did not affect the oxygen consumption rate, an indirect indicator of mitochondrial respiration. The glycolysis stress test revealed that treatment of the hepatocytes with phenylalanine inhibited glycolysis when the concentration of the substrate for glycolysis was sufficient in cultured media. We also investigated the effect of metabolites derived from conversion of phenylalanine on glycolysis in hepatocytes and found that phenylpyruvate inhibited glycolysis, whereas tyrosine and phenylethylamine did not affect glycolysis.

Conclusions: The findings from the present study complement basic knowledge of the effects of amino acid treatment on energy metabolism in cultured hepatocytes and indicate that phenylalanine and phenylpyruvate inhibit glycolysis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.nut.2020.111042DOI Listing

Publication Analysis

Top Keywords

energy metabolism
16
amino acid
16
acid treatment
12
amino acids
12
glycolysis
9
effects amino
8
treatment hepatocytes
8
hepatocytes phenylalanine
8
phenylalanine phenylpyruvate
8
phenylpyruvate inhibit
8

Similar Publications

Loz1 is a zinc-responsive transcription factor in fission yeast that maintains cellular zinc homeostasis by repressing the expression of genes required for zinc uptake in high zinc conditions. Previous deletion analysis of Loz1 found a region containing two tandem CH zinc-fingers and an upstream "accessory domain" rich in histidine, lysine, and arginine residues to be sufficient for zinc-dependent DNA binding and gene repression. Here we report unexpected biophysical properties of this pair of seemingly classical CH zinc fingers.

View Article and Find Full Text PDF

Increasing demand for adeno-associated virus (AAV) used in gene therapy highlights the need to enhance AAV production. When intracellular AAV2 and extracellular AAV9 were produced in HEK293T cells using the triple transfection method, apoptosis occurred during the AAV production. To mitigate apoptosis induced by AAV production, the pro-apoptotic BAX/BAK1 genes were knocked out in HEK293T cells.

View Article and Find Full Text PDF

Diabetic cardiomyopathy (DbCM), a significant chronic complication of diabetes, manifests as myocardial hypertrophy, fibrosis, and other pathological alterations that substantially impact cardiac function and elevate the risk of cardiovascular diseases and patient mortality. Myocardial energy metabolism disturbances in DbCM, encompassing glucose, fatty acid, ketone body and lactate metabolism, are crucial factors that contribute to the progression of DbCM. In recent years, novel protein post-translational modifications (PTMs) such as lactylation, β-hydroxybutyrylation, and succinylation have been demonstrated to be intimately associated with the myocardial energy metabolism process, and in conjunction with acetylation, they participate in the regulation of protein activity and gene expression activity in cardiomyocytes.

View Article and Find Full Text PDF

CASC8 activates the pentose phosphate pathway to inhibit disulfidptosis in pancreatic ductal adenocarcinoma though the c-Myc-GLUT1 axis.

J Exp Clin Cancer Res

January 2025

Department of Hepato-Biliary-Pancreatic Surgery, General Surgery, Huadong Hospital, Fudan University, Shanghai, 200040, PR China.

Purpose: Glucose starvation induces the accumulation of disulfides and F-actin collapse in cells with high expression of SLC7A11, a phenomenon termed disulfidptosis. This study aimed to confirm the existence of disulfidptosis in pancreatic ductal adenocarcinoma (PDAC) and elucidate the role of Cancer Susceptibility 8 (CASC8) in this process.

Methods: The existence of disulfidptosis in PDAC was assessed using flow cytometry and F-actin staining.

View Article and Find Full Text PDF

Muscular dystrophies (MD) are a group of hereditary diseases marked by progressive muscle loss, leading to weakness and degeneration of skeletal muscles. These conditions often result from structural defects in the Dystrophin-Glycoprotein Complex (DGC), as seen in Duchenne Muscular Dystrophy (DMD) and Becker Muscular Dystrophy (BMD). Since MDs currently have no cure, research has focused on identifying potential therapeutic targets to improve patients' quality of life.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!