A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Urolithin A, a pomegranate metabolite, protects pancreatic β cells from apoptosis by activating autophagy. | LitMetric

Ethnopharmacological Relevance: Urolithin A is an active metabolite of plant polyphenol ellagic acid generated by intestinal flora, which is derived from strawberry or traditional anti-diabetic Chinese medicine such as Punica granatum L. and Phyllanthus emblica. The present study aimed to whether urolithin A can protect against glycolipid-toxicity-induced apoptosis of pancreatic β-cells and the underlying mechanisms.

Materials And Methods: Apoptosis was induced in the pancreas of mice with type 2 diabetes and MIN6 pancreatic β-cells. CC-8 assay was conducted to determine cell viability. Flow cytometry, JC-1 fluorescent probe, and western blot assays were performed to assess apoptosis. Immunofluorescence and western blot assays were used to detect changes in autophagy. The mechanism of apoptosis was elucidated using autophagy inhibitor chloroquine.

Results: Urolithin A intervention significantly reduced pancreatic cell apoptosis in diabetic mice and MIN6 β cells. This was achieved by the downregulation of cleaved-caspase 3, cleaved-caspase 1, and restoration of cell viability, cell morphology and mitochondrial membrane potential, accompanied with the downregulation of autophagic protein SQSTM1/p62 and upregulation of LC3II. Chloroquine, an autophagy inhibitor, reversed the anti-glucolipotoxic and anti-apoptotic effects of urolithin A.

Conclusion: These findings suggest that urolithin A protects against glucolipotoxicity-induced apoptosis in pancreatic β-cells by inducing activation of autophagy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jep.2020.113628DOI Listing

Publication Analysis

Top Keywords

pancreatic β-cells
12
apoptosis pancreatic
8
cell viability
8
western blot
8
blot assays
8
autophagy inhibitor
8
apoptosis
7
urolithin
6
pancreatic
5
autophagy
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!