Porous organic frameworks (POFs) are a kind of porous material with a network structure composed of repeated monomers, which have excellent physical and chemical properties, such as a high surface area, high porosity, uniform pore sizes and structural diversity, and which have aroused broad interest among researchers. With the rapid development of materials science, increasingly more porous materials have been developed and applied, especially metal organic frameworks (MOFs) and covalent organic frameworks (COFs), which have been widely applied in the fields of luminous materials, catalytic research, adsorption and drug transport. One of the most important applications for chiral porous materials is in chiral separation and these materials have become a research hotspot in the field of chromatographic separation and analysis in recent years. In this review, from the viewpoint of enantioseparation, the synthesis of chiral porous materials and their applications in high-performance liquid chromatography (HPLC), capillary electrochromatography (CEC), and gas chromatography (GC) are reviewed. The typical applications of MOFs in solid-phase microextraction (SPME) are also discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d0ay01831g | DOI Listing |
Int J Biol Macromol
January 2025
Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea. Electronic address:
This study describes the preparation of novel hybrid aerogels derived from gelatin (Gel), incorporating Br-functionalized zirconium-based metal-organic framework (UiO-66-Br; MOF) as modifying agent to effectively eliminate phosphate and fluoride ions from aqueous environments. The adsorption performance of MOF decorated Gel (Gel-xMOF) hybrid aerogels was investigated under different conditions, including agitation time, adsorbent dosage, solution pH, initial phosphate and fluoride concentrations, coexisting ions, and temperature. The functional groups of the gelatin network, coupled with UiO-66-Br, enhanced the adsorption performance of phosphate and fluoride ions from aqueous solutions.
View Article and Find Full Text PDFJ Chromatogr A
December 2024
Synthetic Molecule Pharmaceutical Science, gRED, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, United States. Electronic address:
Quantitative structure retention relation (QSRR) is an active field of research, primarily focused on predicting chromatography retention time (Rt) based on molecular structures of an input analyte on a single or limited number of reversed-phase HPLC (RP-HPLC) columns. However, in the pharmaceutical chemistry manufacturing and controls (CMC) settings, single-column QSRR models are often insufficient. It is important to translate retention time across different HPLC methods, specifically different stationary phases (SP) and mobile phases (MP), to guide the HPLC method development, and to bridge organic impurity profiles across different development phases and laboratories.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
School of Chemistry, Sun Yat-sen University, Guangzhou 510275, Guangdong, China. Electronic address:
Syngas has important industrial applications, and converting CO to CO is critical for syngas production. Metal-organic frameworks (MOFs) have demonstrated significant potential in photocatalytic syngas conversion, although the impact of catalytic reactions on tunable H/CO ratios remains unclear. Herein, we present a novel bimetallic NiCo-MOF catalyst, NiCo, exhibiting high catalytic activity in syngas conversion due to the CO product self-driven effect.
View Article and Find Full Text PDFTalanta
January 2025
State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China. Electronic address:
Flavonoid glycosides are formed by dehydration condensation of aglycones and sugar molecules. Therefore, discrimination of flavonoid glycosides from their corresponding aglycones is a challenging task because they contain the same aglycone part in their molecular structures. Herein, boric acid-functional Eu(III)-organic framework (BA-Eu-MOF) was applied to discriminate flavonoid glycosides including baicalin (Bai), wogonoside (Wog), rutin (Rut), puerarin (Pue), quercitrin (Que) and astragalin (Ast) from their corresponding aglycones for the first time.
View Article and Find Full Text PDFFood Chem
January 2025
Institute of Bast Fiber Crops & Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China. Electronic address:
Sensitive intelligent films can be used to accurately monitor food freshness. In this study, a cellulose acetate curcumin-loaded cyclodextrin (CD)-based metal-organic framework intelligent film (CA-Cur@CD-MOF) was developed to monitor shrimp freshness at different spoilage stages in real time. The mechanical, barrier, optical, and ammonia-sensitive properties of this film were studied.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!