Chiral porous organic frameworks and their application in enantioseparation.

Anal Methods

School of Science, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300350, P. R. China.

Published: January 2021

Porous organic frameworks (POFs) are a kind of porous material with a network structure composed of repeated monomers, which have excellent physical and chemical properties, such as a high surface area, high porosity, uniform pore sizes and structural diversity, and which have aroused broad interest among researchers. With the rapid development of materials science, increasingly more porous materials have been developed and applied, especially metal organic frameworks (MOFs) and covalent organic frameworks (COFs), which have been widely applied in the fields of luminous materials, catalytic research, adsorption and drug transport. One of the most important applications for chiral porous materials is in chiral separation and these materials have become a research hotspot in the field of chromatographic separation and analysis in recent years. In this review, from the viewpoint of enantioseparation, the synthesis of chiral porous materials and their applications in high-performance liquid chromatography (HPLC), capillary electrochromatography (CEC), and gas chromatography (GC) are reviewed. The typical applications of MOFs in solid-phase microextraction (SPME) are also discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0ay01831gDOI Listing

Publication Analysis

Top Keywords

organic frameworks
16
chiral porous
12
porous materials
12
porous organic
8
materials
6
porous
5
chiral
4
organic
4
frameworks
4
frameworks application
4

Similar Publications

Synthesis of zirconium-based metal-organic framework/gelatin aerogel for removing phosphate and fluoride from aqueous solutions.

Int J Biol Macromol

January 2025

Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea. Electronic address:

This study describes the preparation of novel hybrid aerogels derived from gelatin (Gel), incorporating Br-functionalized zirconium-based metal-organic framework (UiO-66-Br; MOF) as modifying agent to effectively eliminate phosphate and fluoride ions from aqueous environments. The adsorption performance of MOF decorated Gel (Gel-xMOF) hybrid aerogels was investigated under different conditions, including agitation time, adsorbent dosage, solution pH, initial phosphate and fluoride concentrations, coexisting ions, and temperature. The functional groups of the gelatin network, coupled with UiO-66-Br, enhanced the adsorption performance of phosphate and fluoride ions from aqueous solutions.

View Article and Find Full Text PDF

A generalizable methodology for predicting retention time of small molecule pharmaceutical compounds across reversed-phase HPLC columns.

J Chromatogr A

December 2024

Synthetic Molecule Pharmaceutical Science, gRED, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, United States. Electronic address:

Quantitative structure retention relation (QSRR) is an active field of research, primarily focused on predicting chromatography retention time (Rt) based on molecular structures of an input analyte on a single or limited number of reversed-phase HPLC (RP-HPLC) columns. However, in the pharmaceutical chemistry manufacturing and controls (CMC) settings, single-column QSRR models are often insufficient. It is important to translate retention time across different HPLC methods, specifically different stationary phases (SP) and mobile phases (MP), to guide the HPLC method development, and to bridge organic impurity profiles across different development phases and laboratories.

View Article and Find Full Text PDF

CO driven tunable syngas synthesis via CO photoreduction using a novel NiCo bimetallic metal-organic frameworks.

J Colloid Interface Sci

January 2025

School of Chemistry, Sun Yat-sen University, Guangzhou 510275, Guangdong, China. Electronic address:

Syngas has important industrial applications, and converting CO to CO is critical for syngas production. Metal-organic frameworks (MOFs) have demonstrated significant potential in photocatalytic syngas conversion, although the impact of catalytic reactions on tunable H/CO ratios remains unclear. Herein, we present a novel bimetallic NiCo-MOF catalyst, NiCo, exhibiting high catalytic activity in syngas conversion due to the CO product self-driven effect.

View Article and Find Full Text PDF

Fluorescent distinguishing flavonoid glycosides against aglycones based on the selective recognization of boric acid-functional Eu(III)-organic framework.

Talanta

January 2025

State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China. Electronic address:

Flavonoid glycosides are formed by dehydration condensation of aglycones and sugar molecules. Therefore, discrimination of flavonoid glycosides from their corresponding aglycones is a challenging task because they contain the same aglycone part in their molecular structures. Herein, boric acid-functional Eu(III)-organic framework (BA-Eu-MOF) was applied to discriminate flavonoid glycosides including baicalin (Bai), wogonoside (Wog), rutin (Rut), puerarin (Pue), quercitrin (Que) and astragalin (Ast) from their corresponding aglycones for the first time.

View Article and Find Full Text PDF

Sensitive intelligent films can be used to accurately monitor food freshness. In this study, a cellulose acetate curcumin-loaded cyclodextrin (CD)-based metal-organic framework intelligent film (CA-Cur@CD-MOF) was developed to monitor shrimp freshness at different spoilage stages in real time. The mechanical, barrier, optical, and ammonia-sensitive properties of this film were studied.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!