The main goals of conservation agriculture are to enhance soil fertility and reduce soil degradation, especially through erosion. However, conservation agriculture practices can increase the risk of contamination by pesticides, mainly through vertical transfer via water flow. Better understanding of their sorption and degradation processes is thus needed in conservation agriculture as they control the amount of pesticide available for vertical transfer. The purpose of our study was to investigate the sorption and degradation processes of nicosulfuron in soil profiles (up to 90 cm deep) of a Vermic Umbrisol and a Stagnic Luvisol managed either in conventional or in conservation agriculture. Two laboratory sorption and incubation experiments were performed. Low sorption was observed regardless of the soil type, agricultural management or depth, with a maximum value of 1.3 ± 2.0 L kg. By the end of the experiment (91 days), nicosulfuron mineralisation in the Vermic Umbrisol was similar for the two types of agricultural management and rather depended on soil depth (29.0 ± 2.3% in the 0-60-cm layers against 7.5 ± 1.4% in the 60-90 cm). In the Stagnic Luvisol, nicosulfuron mineralisation reached similar value in every layer of the conservation agriculture plot (26.5% ± 0.7%). On the conventional tillage plot, mineralisation decreased in the deepest layer (25-60 cm) reaching only 18.4 ± 6.9% of the applied nicosulfuron. Regardless of the soil type or agricultural management, non-extractable residue formation was identified as the main dissipation process of nicosulfuron (45.1 ± 8.5% and 50.2 ± 7.0% under conventional and conservation agriculture respectively after 91 days). In our study, nicosulfuron behaved similarly in the Vermic Umbrisol regardless of the agricultural management, whereas the risk of transfer to groundwater seemed lower in the Stagnic Luvisol under conservation agriculture.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-020-11772-2DOI Listing

Publication Analysis

Top Keywords

conservation agriculture
32
stagnic luvisol
16
vermic umbrisol
16
agricultural management
16
conventional conservation
12
conservation
8
agriculture
8
vertical transfer
8
sorption degradation
8
degradation processes
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!