Reaction between Ag and acetylene outside the mass spectrometer: dehydrogenation in the gas phase.

Chem Commun (Camb)

DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India.

Published: December 2020

We present the first example of acetylide protected silver clusters by a reaction between Ag and acetylene, conducted around atmospheric pressure. The products were obtained after dehydrogenation of acetylene in the gas phase. The observed reaction mechanism may be helpful to design new catalysts useful in organometallic chemistry.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0cc05837hDOI Listing

Publication Analysis

Top Keywords

reaction acetylene
8
gas phase
8
acetylene mass
4
mass spectrometer
4
spectrometer dehydrogenation
4
dehydrogenation gas
4
phase example
4
example acetylide
4
acetylide protected
4
protected silver
4

Similar Publications

Protein S-palmitoylation is the process by which a palmitoyl fatty acid is attached to a cysteine residue of a protein via a thioester bond. A range of methodologies are available for the detection of protein S-palmitoylation. In this study, two methods for the S-palmitoylation of different proteins were compared after metabolic labeling of cells with 15-hexadecynoic acid (15-YNE) to ascertain their relative usefulness.

View Article and Find Full Text PDF

Reactions of Tertiary Aliphatic Cations with Silylated Alkynes: Substitution, Cyclization and Unexpected C-H Activation Products.

Chemistry

January 2025

Université de Rennes 1, Chemistry, Equipe CORINT, Institut des Sciences Chimiques de Rennes, Université de Rennes 1 - UMR 6226 CNRS, Bâtiment 10A, Bureau 158, Avenue du Général Leclerc, 35042, Rennes, FRANCE.

Capozzi's groundbreaking work in 1982 introduced a fascinating reaction involving highly reactive tertiary aliphatic cations and silylated alkynes. This reaction provided an innovative solution to the challenge of coupling a fully substituted tertiary aliphatic fragment with an alkyne moiety. Building upon Capozzi's pioneering efforts, we started an extensive exploration of reaction conditions to expand the initial scope of this reaction.

View Article and Find Full Text PDF

The use of gold nanoclusters in biomedical applications has been steadily increasing in recent years. However, water solubility is a key factor for these applications, and water-soluble gold nanoclusters are often difficult to isolate and susceptible to exchange or oxidation in vivo. Herein, we report the isolation of N-heterocyclic carbene (NHC)-protected atomically precise gold nanoclusters functionalized with triethylene glycol monomethyl ether groups.

View Article and Find Full Text PDF

In the field of nanocluster catalysis, it is crucial to understand the interplay of different parameters, such as ligands, support and pretreatment and their effect on the catalytic process. In this study, we chose the selective hydrogenation of phenylacetylene as a model reaction and employed two gold nanoclusters as catalysts, the phosphine protected Au and the thiolate protected Au, each with different binding motifs. They were supported on MgO, AlO and a hydrotalcite (HT), chosen for their different acidity.

View Article and Find Full Text PDF

Due to their conductive properties and optoelectronic tunability, MXenes have revolutionized the area of electrocatalysis and active materials in supercapacitors. In comparison, there are only a few reports on MXenes as thermal catalysts for general organic reactions. Herein, the unprecedented catalytic activity of TiC MXene for the hydroamination of alkynes is reported, overcoming the limitations of poor activity, lack of selectivity, and stability, which are generally encountered in the solid catalysts known so far.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!