Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A strategy to implement four members of the classic coal-tar dye family, Michler's ketone, methylene blue, rhodamine B, and crystal violet, into [Pd L ] self-assemblies is introduced. Chromophores were incorporated into bis-monodentate ligands using piperazine linkers that allow to retain the auxochromic dialkyl amine functionalities required for intense colors deep in the visible spectrum. Upon palladium coordination, ligands with pyridine donors form lantern-shaped dinuclear cages while quinoline donors lead to strongly twisted [Pd L ] helicates in solution. In one case, single crystal X-ray diffraction revealed rearrangement to a [Pd L ] ring structure in the solid state. For nine examined derivatives, showing colors from yellow to deep violet, CD spectroscopy discloses different degrees of chiral induction by an enantiomerically pure guest. Ion mobility mass spectrometry allows to distinguish two binding modes. Self-assemblies based on this new ligand class promise application in chiroptical recognition, photo-redox catalysis and optical materials.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7986857 | PMC |
http://dx.doi.org/10.1002/anie.202015246 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!