3D printable biomimetic rod with superior buckling resistance designed by machine learning.

Sci Rep

Department of Mechanical & Industrial Engineering, Louisiana State University, Baton Rouge, LA, 70803, USA.

Published: November 2020

Our mother nature has been providing human beings with numerous resources to inspire from, in building a finer life. Particularly in structural design, plenteous notions are being drawn from nature in enhancing the structural capacity as well as the appearance of the structures. Here plant stems, roots and various other structures available in nature that exhibit better buckling resistance are mimicked and modeled by finite element analysis to create a training database. The finite element analysis is validated by uniaxial compression to buckling of 3D printed biomimetic rods using a polymeric ink. After feature identification, forward design and data filtering are conducted by machine learning to optimize the biomimetic rods. The results show that the machine learning designed rods have 150% better buckling resistance than all the rods in the training database, i.e., better than the nature's counterparts. It is expected that this study opens up a new opportunity to design engineering rods or columns with superior buckling resistance such as in bridges, buildings, and truss structures.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7692558PMC
http://dx.doi.org/10.1038/s41598-020-77935-wDOI Listing

Publication Analysis

Top Keywords

buckling resistance
16
machine learning
12
superior buckling
8
better buckling
8
finite element
8
element analysis
8
training database
8
biomimetic rods
8
buckling
5
rods
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!