The effect of calcium electroporation on viability, phenotype and function of melanoma conditioned macrophages.

Sci Rep

CancerResearch@UCC, University College Cork, Fourth floor, Western Gateway Building, Western Road, Cork, Ireland.

Published: November 2020

Electroporation in combination with chemotherapy is an established treatment used on solid malignancies that results in enhanced chemotherapeutic uptake. Recent advances have begun to transition to the use of non-toxic compounds, such as calcium, in lieu of chemotherapy, which can also induce tumour cell death. While the effect of treatment on tumour cell death has been well characterized and has been shown to induce an immunogenic form of cell death, the effect of treatment on intratumoural immune cells has not been investigated. Here we present data showing the effect of calcium electroporation on immune cells, using melanoma-conditioned bone marrow-derived macrophages. Similar to tumour cells, macrophage cell membranes are susceptible to poration following treatment and subsequently reseal. Macrophages are less susceptible to calcium electroporation induced cell death in comparison to B16F10 melanoma cells. However treatment with electroporation with or without bleomycin or calcium was shown to affect macrophage phenotype and function. Coculture of calcium electroporated macrophages revealed that both the capacity of macrophages to stimulate and direct T cell responses are affected following exposure to treatment. We conclude that calcium electroporation has the potential to boost the immunogenic capacity of exposed tumour associated macrophages, and further research is warranted to determine if calcium electroporation can be optimised to generate systemic anti-cancer immune responses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7691332PMC
http://dx.doi.org/10.1038/s41598-020-77743-2DOI Listing

Publication Analysis

Top Keywords

calcium electroporation
20
cell death
16
calcium
8
phenotype function
8
tumour cell
8
death treatment
8
immune cells
8
macrophages
6
electroporation
6
treatment
6

Similar Publications

The primary method of treatment for patients suffering from drug-resistant focal-onset epilepsy is resective surgery, which adversely impacts neurocognitive function. Radio frequency (RF) ablation and laser ablation are the methods with the most promise, achieving seizure-free rates similar to resection but with less negative impact on neurocognitive function. However, there remains a number of concerns and open technical questions about these two methods of thermal ablation, with the primary ones: (1) heating; (2) hemorrhage and bleeding; and (3) poor directionality.

View Article and Find Full Text PDF

Calcium electroporation (CaEP) is an efficient approach for ovarian cancer treatment. It causes cell death by introducing elevated levels of calcium into cells. In this work, the research focused on two types of cell lines: CHO-K1, representing normal ovary cells, and OvBH-1, representing ovarian clear carcinoma cells.

View Article and Find Full Text PDF

Reversible Electroporation for Cancer Therapy.

Br J Radiol

November 2024

Department of Diagnostic and Interventional Radiology, St James's University Hospital, Leeds Teaching Hospitals NHS Trust, Leeds, LS9 7TF.

Reversible electroporation refers to the use of high voltage electrical pulses on tissues to increase cell membrane permeability. It allows targeted delivery of high concentrations of chemotherapeutic agents including cisplatin and bleomycin, a process known as electrochemotherapy (ECT). It can also be used to deliver toxic concentrations of calcium and gene therapies that stimulate an anti-tumour immune response.

View Article and Find Full Text PDF

Enhancing lung cancer growth inhibition with calcium ions: Role of mid- and high-frequency electric field pulses.

Biomed Pharmacother

December 2024

Wroclaw Medical University, Faculty of Pharmacy, Department of Molecular and Cellular Biology, Wroclaw, Poland; Medical University Hospital, Wroclaw, Poland. Electronic address:

Calcium electroporation (CaEP) involves the combination of calcium ions with electroporation, which is induced by pulsed electric fields (PEFs). This study explores the application of high-frequency unipolar nanosecond pulsed electric fields (nsPEFs: 8-14 kV/cm, 200 ns, 10 kHz, 100 kHz, 1 MHz repetition frequency pulse bursts, n = 100) and their potential in inhibiting lung cancer cell growth. As a reference, standard microsecond range parametric protocols were used (100 µs x 8 pulses).

View Article and Find Full Text PDF
Article Synopsis
  • - This study examines how complex cellular structures, specifically Jurkat cells with features like the endoplasmic reticulum and mitochondria, respond to external electric pulses by modeling transmembrane potential and electroporation.
  • - Simulations reveal that electroporation requires a stronger electric field for the endoplasmic reticulum compared to the inner mitochondrial membrane, which is more susceptible to poration, and may be linked to increased intracellular calcium levels.
  • - The research also explores how repeated electric pulses and electrode placement enhance membrane poration, while acknowledging that although more complex models could improve accuracy, basic trends in findings are likely to persist.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!