In-vitro mechanical and biological evaluation of novel zirconia reinforced bioglass scaffolds for bone repair.

J Mech Behav Biomed Mater

Ceramic and Composite Materials Research Group (CERMAT), Federal University of Santa Catarina (UFSC), Campus Trindade, Florianópolis, SC, Brazil; Center for MicroElectroMechanical Systems (CMEMS-UMINHO), University of Minho, Campus de Azurém, 4800-058, Guimarães, Braga, Portugal; School of Dentistry (DODT), Postgraduate Program in Dentistry (PPGO), Federal University of Santa Catarina, Campus Trindade, 88040-900, Florianópolis, SC, Brazil. Electronic address:

Published: February 2021

Bone defects resulting from infections, tumors, or traumas represent a major health care issue. Tissue engineering has been working togehter with medicine to develop techniques to repair bone damage and increase patient's life quality. In that context, scaffolds composed of bioactive ceramics have been explored, although their poor mechanical properties restrain their clinical applications as highly porous structures. As an alternative solution, this study aimed to evaluate the mechanical properties and biological response of novel zirconia reinforced bioactive glass scaffolds (ZRBG) manufactured by the replica method. The microstructure, chemical composition, compressive strength, density, in-vitro bioactivity, and cell viability were analyzed and compared to scaffolds made of monolithic zirconia of similar architecture (45, 60 and 85 ppi). The microstructure of ZRGB scaffolds consisted of a bioactive glass matrix with dispersed zirconia particles (~33% glassy phase) and the compressive strength values (ZRBG scaffolds: 0.33 ± 0.11, 0.41 ± 0.20 and 0.48 ± 0.6 MPa; ZRBG scaffolds with extra BG coating: 0.38 ± 0.13, 0.45 ± 0.11 and 0.50 ± 0.14 MPa for 45, 60 and 80 ppi, respectively) were not statistically different from those of zirconia scaffolds (0.25 ± 0.14 MPa for 45 ppi, 0.32 ± 0.11 MPa for 60 ppi and 0.44 ± 0.07 MPa for 80 ppi). No bioactivity was exhibited by monolithic zirconia scaffolds while significant bioactive response was found for ZRBG scaffolds. The cell viability of ZRBG scaffolds in osteogenic medium was improved up to 171% over zirconia scaffolds. This work provides promosing results for further exploring this technique for implant dentistry.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmbbm.2020.104164DOI Listing

Publication Analysis

Top Keywords

zrbg scaffolds
16
scaffolds
12
zirconia scaffolds
12
novel zirconia
8
zirconia reinforced
8
repair bone
8
mechanical properties
8
bioactive glass
8
compressive strength
8
cell viability
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!