Effect of salinity on preconcentration of contaminants of emerging concern by nanofiltration: Application of solar photo-Fenton as a tertiary treatment.

Sci Total Environ

Plataforma Solar de Almería-CIEMAT, Carretera de Senés Km 4, Tabernas, Almería, Spain. Electronic address:

Published: February 2021

This study focused on the effect of salinity on the performance of a pilot-scale nanofiltration (NF) for preconcentration of microcontaminants (MCs) in combination with solar photo-Fenton or photo-Fenton-like treatment for their elimination from NF permeate and concentrate streams. Photo-Fenton was carried out in a solar simulator at pH of 3 and at natural pH using Ethylenediamine-N, N'-disuccinic acid (EDDS) as an iron complexing agent. Degradation efficacy was tested with MCs commonly found in urban wastewater treatment plant effluents (caffeine, imidacloprid, thiacloprid, carbamazepine and diclofenac). Hydrogen peroxide and persulfate were compared in solar processes. Increase in salinity and pressure had a negligible influence on MC permeability order and NF selectivity. Solar photo-Fenton was able to degrade MCs present in the concentrated stream, and rapidly eliminate any residual MCs that might finally be present in permeate streams. Persulfate used instead of hydrogen peroxide was shown to be inefficient for the selected MCs. Fe(III):EDDS at circumneutral pH was able to remove MCs as quickly as classical photo-Fenton at acid pH, or even faster. This effect supports use of Fe(III):EDDS at natural pH for treating NF concentrates or polishing NF permeates when NF membranes are operated under extreme conditions of salinity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2020.143593DOI Listing

Publication Analysis

Top Keywords

solar photo-fenton
12
hydrogen peroxide
8
mcs
6
solar
5
photo-fenton
5
salinity
4
salinity preconcentration
4
preconcentration contaminants
4
contaminants emerging
4
emerging concern
4

Similar Publications

Mass-fraction-optimized heterojunction composites featuring precisely engineered interfaces and mesoporous structures are crucial for improving light absorption, minimizing electron-hole recombination, and boosting overall catalytic efficiency. Herein, highly efficient mesoporous-NiFe2O4@g-C3N4 heterojunctions were developed by embedding p-type NiFe2O4 nanoparticles (NPs) within n-type porous ultrathin g-C3N4 (p-uCN) nanosheets. The optimized NiFe2O4@g-C3N4, loaded with 20wt% magnetic counterparts, exhibits exceptional photocatalytic methylene blue degradation, achieving the highest performance in both photocatalytic and photo-Fenton processes with rate constants of 0.

View Article and Find Full Text PDF

Advanced solar photo-Fenton-like process with directly growing nano-heterojunctions on graphite fiber felt for phenolic wastewater treatment :Synergistically expand the pH activity range and facilitate the Fe(III)/Fe(II) cycle.

Chemosphere

December 2024

School of Materials Science and Engineering, Shijiazhuang Tiedao University, Hebei Key Laboratory of New Materials for Collaborative Development of Traffic Engineering and Environment. Electronic address:

Nanoscale FeWO/BiVO heterojunctions were directly grown on the graphite fiber felt (GF) with good conductivity to construct a FeWO/BiVO @GF solar photo-Fenton like wastewater treatment system. The removal effect of COD from phenolic wastewater and the mechanism of synergistic improvement of wastewater treatment efficiency by this system were investigated. The FeWO/BiVO heterojunction prepared by hydrothermal method exhibited higher photoelectric conversion efficiency and solar light utilization rate, thus endowing FeWO/BiVO with excellent solar-Fenton like reaction activity.

View Article and Find Full Text PDF

Piggery wastewater treatment by solar photo-Fenton coupled with microalgae production.

Water Res

November 2024

LNEG, National Laboratory of Energy and Geology I.P., Bioenergy and Biorefineries Unit, Estrada do Paço do Lumiar 22, Lisbon 1649-038, Portugal; GreenCoLab, Green Ocean Technologies and Products Collaborative Laboratory, University of Algarve, Campus de Gambelas, Faro 8005-139, Portugal.

Pig farming generates highly polluted wastewater that requires effective treatment to minimize environmental damage. Microalgae can recover nutrients from piggery wastewater (PWW), but excessive nutrient and turbidity levels inhibit their growth. Solar photo-Fenton (PF) offer a sustainable and cost-effective pretreatment to allow microalgal growth for further PWW treatment.

View Article and Find Full Text PDF

FeOOH Quantum Dots Assembled MXene-Decorated 3D Photothermal Evaporator for Synergy Application in Solar Evaporation and Fenton Degradation.

Small Methods

November 2024

Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan, 430062, P. R. China.

Solar-driven water evaporation is considered as the sustainable approach to alleviate freshwater resource crisis through direct use of solar energy. However, it is still challenging to achieve the multifunctional solar evaporators equipped with both high evaporation and purification performance to handle practical complex wastewater. Here, a simple and cost-effective multifunctional 3D solar evaporator is prepared by alternately decorating the commercial sponge with FeOOH quantum dots (FQDs) supported MXene sheets composites and chitosan hydrogel coatings for enabling the solar water evaporation and organic wastewater photodegradation simultaneously.

View Article and Find Full Text PDF

Distinct pathway of multiferroic silver-decorated zinc ferrite nanocatalyst performance for Acinate insecticide oxidation.

Sci Rep

November 2024

Basic Engineering Science Department, Faculty of Engineering, Menoufia University, Shebin El-Kom, 32511, Egypt.

The current study investigating the preparation and application of a Multiferroic nano-scale silver zinc ferrite substance (AgZnFeO nanocatalyst) has been established. Multiferroic silver zinc ferrite substance is prepared by co-precipitation technique as hybridized composite. This synethsized nanoparticles was characterized via X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM) as well as Scanning Electron Miscospopy (SEM).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!