Quercetin enhances and modulates the fungal killing efficacy of chicken heterophils through immunological recognition, effector functions, and resolution.

Comp Immunol Microbiol Infect Dis

Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand; Research Center of Producing and Development of Products and Innovations for Animal Health and Production, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Veterinary Biosciences (CEVB), Chiang Mai University, Chiang Mai, Thailand. Electronic address:

Published: February 2021

AI Article Synopsis

  • Quercetin has been shown to enhance the immune response of chicken heterophils against the pathogenic yeast Candida albicans.
  • It reduces reactive oxygen species (ROS) generation, promotes phagocytosis, and increases candidacidal activity in these immune cells.
  • The study also indicates quercetin's role in improving gene expression related to fungal recognition and reducing inflammation.

Article Abstract

Herbal compound, quercetin, has previously been shown its modulatory effects on mammalian neutrophils and avian counterpart. However, at this instance it is not clear how quercetin promotes its effects on fungal and yeast killing in chicken heterophils. In the present study, we have proved that quercetin exerts the significant modulatory effects against pathogenic yeast (Candida albicans) in freshly isolated heterophils from Thai native broiler chicken. This substance is shown to facilitate heterophil effector functions through the reduction of ROS generation, and promotion of phagocytosis and candidacidal killing. The quercetin effects on zymosan recognition and migration of cells toward zymosan are subtle, but insignificant differed from control, whereas cell migration towards live Candida is markedly differed. We also find the abundant release of heterophil extracellular traps (HETs) from quercetin-primed cells. From a gene expression standpoint, cells received quercetin display the up-regulation of fungal recognition and migratory genes. The quercetin shows anti-inflammatory function by suppression of pro-inflammatory cytokine genes as well as most of ROS-related genes. Collectively, our findings highlight and provide clues for a promising utilization of quercetin in chicken innate immunity to further combat the fungal infections.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cimid.2020.101582DOI Listing

Publication Analysis

Top Keywords

quercetin
8
chicken heterophils
8
effector functions
8
modulatory effects
8
quercetin enhances
4
enhances modulates
4
fungal
4
modulates fungal
4
fungal killing
4
killing efficacy
4

Similar Publications

Background: Edible insects are used for consumption and traditional medicine due to their rich bioactive compounds. This study examined the bioactive compounds and inhibitory effects of crude extracts from Bombyx mori and Omphisa fuscidentalis on α-glucosidase, α-amylase, acetylcholinesterase (AChE), and tyrosinase. Fatty acids, including n-hexadecanoic acid and oleic acid, were identified in the extracts and evaluated for their inhibitory potential against the enzymes in vitro and in silico.

View Article and Find Full Text PDF

Burn care and treatment differ markedly from other types of wounds, as they are significantly more prone to infections and struggle to maintain fluid balance post-burn. Moreover, the limited self-healing abilities exacerbate the likelihood of scar formation, further complicating the recovery process. To tackle these issues, an asymmetric wound dressing comprising a quercetin-loaded poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P34HB@Qu) hydrophilic layer and a zinc oxide nanoparticle-loaded, thermally treated polyvinylidene fluoride (HPVDF@ZnO) hydrophobic layer is designed.

View Article and Find Full Text PDF

Dasatinib and Quercetin Limit Gingival Senescence, Inflammation, and Bone Loss.

J Dent Res

January 2025

Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.

Cellular senescence has emerged as one of the central hallmarks of aging and drivers of chronic comorbidities, including periodontal diseases. Senescence can also occur in younger tissues and instigate metabolic alterations and dysfunction, culminating in accelerated aging and pathological consequences. Senotherapeutics, such as the combination of dasatinib and quercetin (DQ), are being increasingly used to improve the clinical outcomes of chronic disorders and promote a healthy life span through the reduction of senescent cell burden and senescence-associated secretory phenotype (SASP).

View Article and Find Full Text PDF

Flavonoids are naturally occurring polyphenolic compounds known for their extensive range of biological activities. This review focuses on the inhibitory effects of flavonoids on acetylcholinesterase (AChE) and their potential as therapeutic agents for cognitive dysfunction. AChE, a serine hydrolase that plays a crucial role in cholinergic neurotransmission, is a key target in the treatment of cognitive impairments due to its function in acetylcholine hydrolysis.

View Article and Find Full Text PDF

Dried Apricot Polyphenols Suppress the Growth of A549 Human Lung Adenocarcinoma Cells by Inducing Apoptosis via a Mitochondrial-Dependent Pathway.

Foods

January 2025

Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China.

Dried apricots are rich in a variety of polyphenols, which have anti-cancer activity. In this study, 949 phenolic substances were found by means of UPLC-MS/MS, mainly including 2',7-dihydroxy-3',4'-dimethoxyisoflavan, scopoletin, rutin, quercetin-3-O-robinobioside, and elaidolinolenic acid. The results indicated that dried apricot polyphenols (DAPs) could cause cell cycle arrest in the G0/G1 and G2/M phases by decreasing the cyclin D1, CDK4, cyclin B1, CDK1, and CDK6 levels in A549 human lung adenocarcinoma cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!