Cancellous bone-like porous Fe@Zn scaffolds with core-shell-structured skeletons for biodegradable bone implants.

Acta Biomater

Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China. Electronic address:

Published: February 2021

Three-dimensional (3D) porous zinc (Zn) with a moderate degradation rate is a promising candidate for biodegradable bone scaffolds. However, fabrication of such scaffolds with adequate mechanical properties remains a challenge. Moreover, the composition, crystallography and microstructure of the in vivo degradation products formed at or near the implant-bone interface are still not precisely known. Here, we have fabricated porous Fe@Zn scaffolds with skeletons consisting of an inner core layer of Fe and an outer shell layer of Zn using template-assisted electrodeposition technique, and systematically evaluated their porous structure, mechanical properties, degradation mechanism, antibacterial ability and in vitro and in vivo biocompatibility. In situ site-specific focused ion beam micromilling and transmission electron microscopy were used to identify the in vivo degradation products at the nanometer scale. The 3D porous Fe@Zn scaffolds show similar structure and comparable mechanical properties to human cancellous bone. The degradation rates can be adjusted by varying the layer thickness of Zn and Fe. The antibacterial rates reach over 95% against S. aureus and almost 100% against E. coli. A threshold of released Zn ion concentration (~ 0.3 mM) was found to determine the in vitro biocompatibility. Intense new bone formation and ingrowth were observed despite with a slight inflammatory response. The in vivo degradation products were identified to be equiaxed nanocrystalline zinc oxide with dispersed zinc carbonate. This study not only demonstrates the feasibility of porous Fe@Zn for biodegradable bone implants, but also provides significant insight into the degradation mechanism of porous Zn in physiological environment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.actbio.2020.11.032DOI Listing

Publication Analysis

Top Keywords

porous fe@zn
16
fe@zn scaffolds
12
biodegradable bone
12
mechanical properties
12
vivo degradation
12
degradation products
12
bone implants
8
degradation mechanism
8
porous
7
degradation
7

Similar Publications

Architecting N-doped Carbon Nanotube-Rich Carbon Nanofibers with Biomimetic Vine-Leaf-Whisker Structure as Robust Bifunctional Electrocatalysts for Rechargeable Zn-Air Batteries.

Inorg Chem

March 2024

Industrial Research Institute of Nonwovens & Technical Textiles, Shandong Engineering Research Center for Specialty Nonwoven Materials, College of Textiles & Clothing, Qingdao University, Qingdao, Shandong 266071, PR China.

Efficient and durable bifunctional catalysts toward oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are urgently desirable but challenging for rechargeable Zn-air batteries (ZABs), especially flexible wearable ZABs. Inspired by the vine-leaf-whisker structure in nature, we proposed a three-dimensional (3D) hierarchical bifunctional catalyst (denoted as Co-Fe-Zn@N-CNT/CNF) consisting of N-doped carbon nanotubes embedded with abundant CoFe alloy nanoparticles, leaf-shaped N-doped carbon nanoflakes, and porous carbon fibers for rechargeable ZABs. The special biomimetic structure provides a large specific surface area, allowing for high exposure of the active site and ensuring fast mass transport/charge transfer.

View Article and Find Full Text PDF

Iron-mediated activation of peroxymonosulfate (PMS) has been of great interest for the effective removal of contaminants, but it still suffered from ineffective metal redox cycle rate, which resulted in unsatisfactory catalytic efficiency. Constructing bimetallic carbonaceous materials was effective way to improve the catalytic performance of iron-based heterogeneous system. In this study, magnetic bimetallic porous carbon composite (FZC) was synthesized via Fe/Zn bi-MOFs pyrolysis for 2,4-dichlorophenol (2,4-DCP) degradation by peroxymonosulfate.

View Article and Find Full Text PDF

Implementing Mesoporosity in Zeolitic Imidazolate Frameworks through Clip-Off Chemistry in Heterometallic Iron-Zinc ZIF-8.

J Am Chem Soc

October 2023

Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, c/Catedrático José Beltrán 2, Paterna 46980, Spain.

Bond breaking has emerged as a new tool to postsynthetically modify the pore structure in metal-organic frameworks since it allows us to obtain pore environments in structures that are inaccessible by other techniques. Here, we extend the concept of clip-off chemistry to archetypical ZIF-8, taking advantage of the different stabilities of the bonds between imidazolate and Zn and Fe metal atoms in heterometallic Fe-Zn-ZIF-8. We demonstrate that Fe centers can be removed selectively without affecting the backbone of the structure that is supported by the Zn atoms.

View Article and Find Full Text PDF

Enhanced adsorption of phenol from aqueous solution by KOH combined Fe-Zn bimetallic oxide co-pyrolysis biochar: Fabrication, performance, and mechanism.

Bioresour Technol

November 2023

National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forest Biomass Resources, Southwest Forestry University, College of Materials & Chemical Engineering, Southwest Forestry University, Kunming 650224, PR China. Electronic address:

In this study, impregnation combined with KOH activation with different mixing methods was used to prepare magnetic biochar. The effects of synthetic method on biochar physicochemical properties and adsorption performance were explored. The results showed that treatment of a Fe-Zn oxide with KOH activation provided excellent adsorption properties with adsorption capacity of 458.

View Article and Find Full Text PDF

Atomic Fe/Zn anchored N, S co-doped nano-porous carbon for boosting oxygen reduction reaction.

J Colloid Interface Sci

April 2023

School of Integrated Circuit Science and Engineering, and State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, PR China. Electronic address:

Dual-single-atom catalysts are well-known due to their excellent catalytic performance of oxygen reduction reaction (ORR) and the tunable coordination environment of the active sites. However, it is still challengable to finely modulate the electronic states of the metal atoms and facilely fabricate a catalyst with dual-single atoms homogeneously dispersed on conductive skeletons with good mass transport. Herein, atomic FeN/ZnN sites anchored N, S co-doped nano-porous carbon plates/nanotubes material (FeZnNSC) is rationally prepared via a facile room-temperature reaction and high-temperature pyrolysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!