Acute myeloid leukemia (AML) is the most frequently diagnosed acute leukemia, and its incidence increases with age. Although the etiology of AML remains unknown, exposure to genotoxic agents or some prior hematologic disorders could lead to the development of this condition. The pathogenesis of AML involves the development of malignant transformation of hematopoietic stem cells that undergo successive genomic alterations, ultimately giving rise to a full-blown disease. From the disease biology perspective, AML is considered to be extremely complex with significant genetic, epigenetic, and phenotypic variations. Molecular and cytogenetic alterations in AML include mutations in those subsets of genes that are involved in normal cell proliferation, maturation and survival, thus posing significant challenge to targeting these pathways without attendant toxicity. In addition, multiple malignant cells co-exist in the majority of AML patients. Individual subclones are characterized by unique genetic and epigenetic abnormalities, which contribute to the differences in their response to treatment. As a result, despite a dramatic progress in our understanding of the pathobiology of AML, not much has changed in therapeutic approaches to treat AML in the past four decades. Dose and regimen modifications with improved supportive care have contributed to improved outcomes by reducing toxicity-related side effects. Several drug candidates are currently being developed, including targeted small-molecule inhibitors, cytotoxic chemotherapies, monoclonal antibodies and epigenetic drugs. This review summarizes the current state of affairs in the pathobiological and therapeutic aspects of AML.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.semcancer.2020.11.010 | DOI Listing |
Acute myeloid leukemia (AML) that is relapsed and/or refractory post-allogeneic hematopoietic cell transplantation (HCT) is usually fatal. In a prior study, we demonstrated that AML relapse in high-risk patients was prevented by post-HCT immunotherapy with Epstein-Barr virus (EBV)-specific donor CD8 T cells engineered to express a high-affinity Wilms Tumor Antigen 1 (WT1)-specific T-cell receptor (TTCR- C4). However, in the present study, infusion of EBV- or Cytomegalovirus (CMV)-specific T did not clearly improve outcomes in fifteen patients with active disease post-HCT.
View Article and Find Full Text PDFEur J Haematol
January 2025
Hematology Unit, Azienda Ospedaliera Annunziata, Cosenza, Italy.
FLT3 mutations are among the most common genetic alterations in acute myeloid leukemia (AML) and are associated with poor prognosis. Significant advancements have been made in developing FLT3 inhibitors (FLT3Is), such as quizartinib, which have improved treatment outcomes in both newly diagnosed and relapsed/refractory AML. Resistance to FLT3Is remains a major clinical challenge, driven by diverse mechanisms including FLT3 point mutations, cellular escape pathways, and the influence of the bone marrow microenvironment.
View Article and Find Full Text PDFMol Cancer
January 2025
Department of Hematology, Qilu Hospital of Shandong University, No.117, West of Wenhua Road, Jinan, Shandong, 250012, People's Republic of China.
Background: Drug resistance and immune escape continue to contribute to poor prognosis in AML. Increasing evidence suggests that exosomes play a crucial role in AML immune microenvironment.
Methods: Sanger sequencing, RNase R and fluorescence in situ hybridization were performed to confirm the existence of circ_0006896.
Clin J Gastroenterol
January 2025
Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan.
A 55-year-old man with tuberous sclerosis complex (TSC) was diagnosed with left renal angiomyolipoma (AML), a group of perivascular epithelioid cell tumors called PEComas. He had received the mTOR inhibitor everolimus, which resulted in a complete response. However, a left renal mass relapsed in two years, followed by the occurrence of a hepatic mass five months later.
View Article and Find Full Text PDFFunct Integr Genomics
January 2025
Intelligent OMICS Limited, Nottingham, United Kingdom.
Gene‒gene interactions play pivotal roles in disease pathogenesis and are fundamental in the development of targeted therapeutics, particularly through the elucidation of oncogenic gene drivers in cancer. The systematic analysis of pathways and gene interactions is critical in the drug discovery process for various cancer subtypes. SPAG5, known for its role in spindle formation during cell division, has been identified as an oncogene in several cancers, although its specific impact on AML remains underexplored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!