Mathematical model of electromigration allowing the deviation from electroneutrality.

Electrophoresis

Faculty of Science, Department of Physical and Macromolecular Chemistry, Charles University in Prague, Prague, Czech Republic.

Published: April 2021

The structure of the double layer on the boundary between solid and liquid phases is described by various models, of which the Stern-Gouy-Chapman model is still commonly accepted. Generally, the solid phase is charged, which also causes the distribution of the electric charge in the adjacent diffuse layer in the liquid phase. We propose a new mathematical model of electromigration considering the high deviation from electroneutrality in the diffuse layer of the double layer when the liquid phase is composed of solution of weak multivalent electrolytes of any valence and of any complexity. The mathematical model joins together the Poisson equation, the continuity equation for electric charge, the mass continuity equations, and the modified G-function. The model is able to calculate the volume charge density, electric potential, and concentration profiles of all ionic forms of all electrolytes in the diffuse part of the double layer, which consequently enables to calculate conductivity, pH, and deviation from electroneutrality. The model can easily be implemented into the numerical simulation software such as Comsol. Its outcome is demonstrated by the numerical simulation of the double layer composed of a charged silica surface and an adjacent liquid solution composed of weak multivalent electrolytes. The validity of the model is not limited only to the diffuse part of the double layer but is valid for electromigration of electrolytes in general.

Download full-text PDF

Source
http://dx.doi.org/10.1002/elps.202000207DOI Listing

Publication Analysis

Top Keywords

double layer
20
mathematical model
12
deviation electroneutrality
12
electric charge
8
diffuse layer
8
layer liquid
8
liquid phase
8
weak multivalent
8
multivalent electrolytes
8
diffuse double
8

Similar Publications

Pericardial effusion refers to the accumulation of fluid within the pericardial sac, the double-layered membrane surrounding the heart. It can be caused by various medical conditions and may lead to serious complications if not diagnosed and managed promptly. Point-of-care ultrasound (POCUS) has emerged as a valuable tool in the clinical evaluation of pericardial effusions, offering real-time visualization and aiding in the assessment of its size, characteristics, and potential hemodynamic impact.

View Article and Find Full Text PDF

Background: Vibrio parahaemolyticus is a marine bacterium causing seafood-associated gastrointestinal illness in humans and acute hepatopancreatic necrosis disease (AHPND) in shrimp. Bacteriophages have emerged as promising biocontrol agents against V. parahaemolyticus.

View Article and Find Full Text PDF

Transpiration-driven electrokinetic power generators (TEPGs) hold promising potential for intelligent chemical sensing applications, enabling the efficient identification and screening of organic solvents. Here, we report a novel TEPG-based chemical sensor using MoS-doped cellulose filter paper for efficient detection of poplar solvents like water, alcohols, and methanol. TEPGs operate by leveraging capillary-driven transpiration to induce solvent flow through porous materials, leading to ion migration and the formation of electrical double layers (EDLs) at the solid-liquid interfaces.

View Article and Find Full Text PDF

Electrochemical sensor based on tadpole-shaped Au nanostructures supported on TiO: Enhanced detection of nicotine in electronic cigarettes and clinical samples.

Talanta

January 2025

Ampere - Laboratório de Plataformas Eletroquímicas. Departamento de Química, Universidade Federal de Santa Catarina, 880400-900, Florianópolis, SC, Brazil. Electronic address:

Nicotine (NIC) detection is vital for monitoring its presence in various environments, including tobacco products, electronic cigarettes, and clinical samples; NIC's widespread use and health implications necessitate precise and reliable detection methods as it is linked to diseases such as lung cancer and vascular disorders. In this study, we developed and characterized Au tadpole-like nanostructures immobilized onto titanium oxide (TiO) to provide a cost-effective and sensitive NIC detection material. The comprehensive characterization of the composite used transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD), showing the robustness of the synthesis.

View Article and Find Full Text PDF

Organic field-effect transistors (OFETs) integrated with commercial transistors are promising sensing platforms characterized by enhanced device uniformity, functional diversity, and electrical output stability. Aptamers with charged backbones and a high affinity for target molecules are anticipated to mitigate the limitations imposed by Debye screening in physiological environments with high ionic strength, thereby facilitating specific biological recognition in complex surroundings. This study presents two reliable OFET aptasensors for vascular endothelial growth factor (VEGF) and offers a systematic comparison of their performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!