Neuronal ceroid lipofuscinosis (NCLs) is a group of inherited neurodegenerative lysosomal storage diseases that together represent the most common cause of dementia in children. Phenotypically, patients have visual impairment, cognitive and motor decline, epilepsy, and premature death. A primary challenge is to halt and/or reverse these diseases, towards which developments in potential effective therapies are encouraging. Many treatments, including enzyme replacement therapy (for CLN1 and CLN2 diseases), stem-cell therapy (for CLN1, CLN2, and CLN8 diseases), gene therapy vector (for CLN1, CLN2, CLN3, CLN5, CLN6, CLN7, CLN10, and CLN11 diseases), and pharmacological drugs (for CLN1, CLN2, CLN3, and CLN6 diseases) have been evaluated for safety and efficacy in pre-clinical and clinical studies. Currently, cerliponase alpha for CLN2 disease is the only approved therapy for NCL. Lacking is any study of potential treatments for CLN4, CLN9, CLN12, CLN13 or CLN14 diseases. This review provides an overview of genetics for each CLN disease, and we discuss the current understanding from pre-clinical and clinical study of potential therapeutics. Various therapeutic interventions have been studied in many experimental animal models. Combination of treatments may be useful to slow or even halt disease progression; however, few therapies are unlikely to even partially reverse the disease and a complete reversal is currently improbable. Early diagnosis to allow initiation of therapy, when indicated, during asymptomatic stages is more important than ever.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s40265-020-01440-7 | DOI Listing |
Sci Transl Med
January 2025
Department of Pediatrics, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA.
Children with neurodegenerative disease often have debilitating gastrointestinal symptoms. We hypothesized that this may be due at least in part to underappreciated degeneration of neurons in the enteric nervous system (ENS), the master regulator of bowel function. To test this hypothesis, we evaluated mouse models of neuronal ceroid lipofuscinosis type 1 and 2 (CLN1 and CLN2 disease, respectively), neurodegenerative lysosomal storage disorders caused by deficiencies in palmitoyl protein thioesterase-1 and tripeptidyl peptidase-1, respectively.
View Article and Find Full Text PDFPak J Med Sci
September 2024
Dr. Tipu Sultan University of Child Health Sciences, The Children's Hospital, Lahore, Pakistan.
Objective: To unravel the clinical and genetic specifications of Neuronal ceroid lipofuscinosis (NCL).
Methods: This is a retrospective cross-sectional study conducted in the Department of Pediatric Neurology Children Hospital and University of Child Health Sciences, Lahore, Pakistan from March 2017 to March 2022. The primary outcome was to measure genotype-phenotype correlation by segregation of phenotypes according to genotype.
Curr Biol
June 2024
Department of Biology, Stanford University, 327 Campus Dr., Stanford, CA 94305, USA; Chan Zuckerberg Biohub, 499 Illinois St., San Francisco, CA 94158, USA. Electronic address:
Progression through the cell cycle depends on the phosphorylation of key substrates by cyclin-dependent kinases. In budding yeast, these substrates include the transcriptional inhibitor Whi5 that regulates G1/S transition. In early G1 phase, Whi5 is hypo-phosphorylated and inhibits the Swi4/Swi6 (SBF) complex that promotes transcription of the cyclins CLN1 and CLN2.
View Article and Find Full Text PDFPediatr Neurol
March 2024
Division of Neurology, Nationwide Children's Hospital, Nationwide Children's Hospital Batten Disease Center for Excellence, The Ohio State University, Columbus, Ohio.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!