Calcium dodecahydro-closo-dodecaborate, CaB12H12, was calculated to have a percolating Ca migration path with low activation barrier (650 meV). The formation of Ca vacancies required for diffusion was calculated to be thermodynamically feasible by substitution of Ca with Al, Bi, or a number of trivalent rare-earth cations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d0cp04500d | DOI Listing |
Nano Lett
January 2025
Department of Mechanical Engineering & Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States.
The development of accurate methods for determining how alloy surfaces spontaneously restructure under reactive and corrosive environments is a key, long-standing, grand challenge in materials science. Using machine learning-accelerated density functional theory and rare-event methods, in conjunction with environmental transmission electron microscopy (ETEM), we examine the interplay between surface reconstructions and preferential segregation tendencies of CuNi(100) surfaces under oxidation conditions. Our modeling approach predicts that oxygen-induced Ni segregation in CuNi alloys favors Cu(100)-O c(2 × 2) reconstruction and destabilizes the Cu(100)-O (2√2 × √2)45° missing row reconstruction (MRR).
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States.
Low-temperature synthesis is crucial for advancing sustainable manufacturing and accessing novel metastable phases. Metal hydrides have shown great potential in facilitating the reduction of oxides at low temperatures, yet the underlying mechanism─whether driven by H, H, or atomic H─remains unclear. In this study, we employ electrical transport measurements and first-principles calculations to investigate the CaH-driven reduction kinetics in epitaxial α-FeO thin films.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Functional Crystals Lab, Key Laboratory of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
Tetrahedral halides with broad transparency and large second harmonic effects have the potential to serve as mid-infrared wide-bandgap materials with balanced nonlinear-optical (NLO) properties. However, their regular tetrahedral motifs tend to exhibit low optical birefringence (Δ < 0.03) due to limited structural anisotropy, which constrains their practical phase-matched capability.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, China.
Perovskite semiconductors have shown significant promise for photodetection due to their low effective carrier masses and long carrier lifetimes. However, achieving balanced detection across a broad spectrum-from X-rays to infrared-within a single perovskite photodetector presents challenges. These challenges stem from conflicting requirements for different wavelength ranges, such as the narrow bandgap needed for infrared detection and the low dark current necessary for X-ray sensitivity.
View Article and Find Full Text PDFMath Biosci Eng
December 2024
Laboratory of Optimization, Design, and Advanced Control, School of Chemical Engineering, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil.
In the pursuit of personalized medicine, there is a growing demand for computational models with parameters that are easily obtainable to accelerate the development of potential solutions. Blood tests, owing to their affordability, accessibility, and routine use in healthcare, offer valuable biomarkers for assessing hemostatic balance in thrombotic and bleeding disorders. Incorporating these biomarkers into computational models of blood coagulation is crucial for creating patient-specific models, which allow for the analysis of the influence of these biomarkers on clot formation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!