This paper reports on the use of scanning ion conductance microscopy (SICM) to locally map the ionic properties and charge environment of two live bacterial strains: the Gram-negative and the Gram-positive . SICM results find heterogeneities across the bacterial surface and significant differences among the Gram-positive and Gram-negative bacteria. The bioelectrical environment of the was found to be considerably more negatively charged compared to . SICM measurements, fitted to a simplified finite element method (FEM) model, revealed surface charge values of -80 to -140 mC m for the Gram-negative . The Gram-positive show a much higher conductivity around the cell wall, and surface charge values between -350 and -450 mC m were found using the same simplified model. SICM was also able to detect regions of high negative charge near , not detected in the topographical SICM response and attributed to the extracellular polymeric substance. To further explore how the cell wall structure can influence the SICM current response, a more comprehensive FEM model, accounting for the physical properties of the Gram-positive cell wall, was developed. The new model provides a more realistic description of the cell wall and allows investigation of the relation between its key properties and SICM currents, building foundations to further investigate and improve understanding of the Gram-positive cellular microenvironment.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.0c03653DOI Listing

Publication Analysis

Top Keywords

cell wall
16
scanning ion
8
ion conductance
8
conductance microscopy
8
gram-negative gram-positive
8
fem model
8
surface charge
8
charge values
8
sicm
7
gram-positive
6

Similar Publications

Background/objectives: DNA vaccines are rapidly produced and adaptable to different pathogens, but they face considerable challenges regarding stability and delivery to the cellular target. Thus, effective delivery methods are essential for the success of these vaccines. Here, we evaluated the efficacy of capsules derived from the cell wall of the yeast as a delivery system for DNA vaccines.

View Article and Find Full Text PDF

The Glycopeptide PV-PS A1 Immunogen Elicits Both CD4+ and CD8+ Responses.

Vaccines (Basel)

December 2024

Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606, USA.

Background/objectives: The MHCII-dependent, CD4+ T-cell zwitterionic polysaccharide PS A1 has been investigated as a promising carrier for vaccine development because it can induce an MHCII-dependent CD4+ response towards a variety of tumor-associated carbohydrate antigens (TACAs). However, PS A1 cannot elicit cytotoxic T lymphocytes through MHCI, which may or may not hamper its potential clinical use in cancer, infectious and viral vaccine development. This paper addresses PS A1 MHCI independence through the introduction of an MHCI epitope, the poliovirus (PV) peptide, to establish an MHCI- and MHCII-dependent vaccine.

View Article and Find Full Text PDF

Plant height represents a pivotal agronomic trait for the genetic enhancement of crops. The plant cell wall, being a dynamic entity, is crucial in determining plant stature; however, the regulatory mechanisms underlying cell wall remodeling remain inadequately elucidated. This study demonstrates that the application of gibberellin 3 (GA3) enhances both plant height and cell wall remodeling in tomato () plants.

View Article and Find Full Text PDF

Heterogeneity in Mechanical Properties of Plant Cell Walls.

Plants (Basel)

December 2024

Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Peking University Institute of Advanced Agricultural Sciences, Weifang 261000, China.

The acquisition and utilization of cell walls have fundamentally shaped the plant lifestyle. While the walls provide mechanical strength and enable plants to grow and occupy a three-dimensional space, successful sessile life also requires the walls to undergo dynamic modifications to accommodate size and shape changes accurately. Plant cell walls exhibit substantial mechanical heterogeneity due to the diverse polysaccharide composition and different development stages.

View Article and Find Full Text PDF

Deepening the Role of Pectin in the Tissue Assembly Process During Tomato Grafting.

Plants (Basel)

December 2024

Área de Fisiología Vegetal, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, 24007 León, Spain.

Cell walls play essential roles in cell recognition, tissue adhesion, and wound response. In particular, pectins as cell-adhesive agents are expected to play a key role in the early stages of grafting. To test this premise, this study focused on examining the dynamics of the accumulation and degree of methyl-esterification of pectic polysaccharides at the graft junctions using tomato autografts as an experimental model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!