A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Machine Learning-Based Risk Assessment for Cancer Therapy-Related Cardiac Dysfunction in 4300 Longitudinal Oncology Patients. | LitMetric

Background The growing awareness of cardiovascular toxicity from cancer therapies has led to the emerging field of cardio-oncology, which centers on preventing, detecting, and treating patients with cardiac dysfunction before, during, or after cancer treatment. Early detection and prevention of cancer therapy-related cardiac dysfunction (CTRCD) play important roles in precision cardio-oncology. Methods and Results This retrospective study included 4309 cancer patients between 1997 and 2018 whose laboratory tests and cardiovascular echocardiographic variables were collected from the Cleveland Clinic institutional electronic medical record database (Epic Systems). Among these patients, 1560 (36%) were diagnosed with at least 1 type of CTRCD, and 838 (19%) developed CTRCD after cancer therapy (de novo). We posited that machine learning algorithms can be implemented to predict CTRCDs in cancer patients according to clinically relevant variables. Classification models were trained and evaluated for 6 types of cardiovascular outcomes, including coronary artery disease (area under the receiver operating characteristic curve [AUROC], 0.821; 95% CI, 0.815-0.826), atrial fibrillation (AUROC, 0.787; 95% CI, 0.782-0.792), heart failure (AUROC, 0.882; 95% CI, 0.878-0.887), stroke (AUROC, 0.660; 95% CI, 0.650-0.670), myocardial infarction (AUROC, 0.807; 95% CI, 0.799-0.816), and de novo CTRCD (AUROC, 0.802; 95% CI, 0.797-0.807). Model generalizability was further confirmed using time-split data. Model inspection revealed several clinically relevant variables significantly associated with CTRCDs, including age, hypertension, glucose levels, left ventricular ejection fraction, creatinine, and aspartate aminotransferase levels. Conclusions This study suggests that machine learning approaches offer powerful tools for cardiac risk stratification in oncology patients by utilizing large-scale, longitudinal patient data from healthcare systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7763760PMC
http://dx.doi.org/10.1161/JAHA.120.019628DOI Listing

Publication Analysis

Top Keywords

cardiac dysfunction
12
cancer therapy-related
8
therapy-related cardiac
8
oncology patients
8
cancer patients
8
machine learning
8
clinically relevant
8
relevant variables
8
cancer
7
patients
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!