Extracellular vesicles (EVs) provide a novel intercellular communication mechanism to transfer biologically important molecules to target cells. Although several pieces of evidence have shown that EVs have potential to respond to bacterial infections, our knowledge about the role of circular RNA (circRNA), an important cargo of EV, behind this process remains poor. In particular, the mechanism by which circRNAs are packaged into EVs remains elusive during bacterial infection. In the present study, EVs from bovine milk samples with or without () infection were isolated. The presence of circRNAs in milk-derived EVs (MEVs) was validated for the first time by PCR amplification with convergent and divergent primers and the RNase R resistance test. Through high-throughput sequencing, the expression profile of circRNAs in EVs was found to be changed during infection. Moreover, we demonstrated that circRNAs were selectively packaged into EVs. Finally, bioinformatic analyses predicted the involvement of differentially expressed circRNAs in immune functions. In summary, our findings offer an insight into the packaging mechanism of EV circRNAs and underscore the potential by which host used the EV circRNAs in response to pathogenic bacterial infections.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8078504PMC
http://dx.doi.org/10.1080/15476286.2020.1853975DOI Listing

Publication Analysis

Top Keywords

extracellular vesicles
8
bacterial infection
8
bacterial infections
8
mechanism circrnas
8
packaged evs
8
evs
7
circrnas
7
infection
5
selective packaged
4
packaged circular
4

Similar Publications

Extracellular vesicles: essential agents in critical bone defect repair and therapeutic enhancement.

Mol Biol Rep

January 2025

Pediatric Cell, and Gene Therapy Research Center Gene, Cell and Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran.

Bone serves as a fundamental structural component in the body, playing pivotal roles in support, protection, mineral supply, and hormonal regulation. However, critical-sized bone injuries have become increasingly prevalent, necessitating extensive medical interventions due to limitations in the body's capacity for self-repair. Traditional approaches, such as autografts, allografts, and xenografts, have yielded unsatisfactory results.

View Article and Find Full Text PDF

Background: Exosomes are extracellular vesicles, composed of a phospholipid bilayer, that are primarily derived from stem cells. The contents of exosomes can be incorporated into the tissue in which they are introduced, which presents a unique therapeutic option.

Aims: Exosomes have been investigated as a treatment for a number of medical ailments, but the literature supporting these indications is inconclusive.

View Article and Find Full Text PDF

Characterisation of Castration-Resistant Cell-Derived Exosomes and Their Effect on the Metastatic Phenotype.

Cancers (Basel)

January 2025

Unidad de Bioquímica y Biología Molecular, Departamento de Biología de Sistemas, Campus Científico-Tecnológico, Universidad de Alcalá, 28805 Alcalá de Henares, Spain.

Background/objectives: Prostate cancer (PCa) is characterised by its progression to a metastatic and castration-resistant phase. Prostate tumour cells release small extracellular vesicles or exosomes which are taken up by target cells and can potentially facilitate tumour growth and metastasis. The present work studies the effect of exosomes from cell lines that are representative of the different stages of the disease on the tumoral phenotype of PC3 cells.

View Article and Find Full Text PDF

, a Gram-negative anaerobic bacterium colonizing the intestinal mucus layer, is regarded as a promising "next-generation probiotic". There is mounting evidence that diabetes and its complications are associated with disorders of abundance. Thus, and its components, including the outer membrane protein Amuc_1100, -derived extracellular vesicles (AmEVs), and the secreted proteins P9 and Amuc_1409, are systematically summarized with respect to mechanisms of action in diabetes mellitus.

View Article and Find Full Text PDF

A Low-Modulus Phosphatidylserine-Exposing Microvesicle Alleviates Skin Inflammation via Persistent Blockade of M1 Macrophage Polarization.

Int J Mol Sci

January 2025

Department of Material Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China.

Inflammatory skin diseases comprise a group of skin conditions characterized by damage to skin function due to overactive immune responses. These disorders not only impair the barrier function of the skin but also deteriorate the quality of life and increase the risk of psychiatric issues. Here, a low-modulus phosphatidylserine-exposing microvesicle (deformed PSV, D-PSV) was produced, characterized, and evaluated for its potential therapeutic function against skin diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!