To what extent do simultaneous innovations occur and are independently from each other? In this paper we use a novel persistent keyword framework to systematically identify innovations in a large corpus containing academic papers in evolutionary medicine between 2007 and 2011. We examine whether innovative papers occurring simultaneously are independent from each other by evaluating the citation and co-authorship information gathered from the corpus metadata. We find that 19 out of 22 simultaneous innovative papers do, in fact, occur independently from each other. In particular, co-authors of simultaneous innovative papers are no more geographically concentrated than the co-authors of similar non-innovative papers in the field. Our result suggests producing innovative work draws from a collective knowledge pool, rather than from knowledge circulating in distinct localized collaboration networks. Therefore, new ideas can appear at multiple locations and with geographically dispersed co-authorship networks. Our findings support the perspective that simultaneous innovations are the outcome of collective behavior.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7719117 | PMC |
http://dx.doi.org/10.1007/s12064-020-00333-3 | DOI Listing |
Nat Commun
January 2025
Oxford Molecular Diagnostics Centre, Department of Oncology, University of Oxford, Oxford, UK.
The analysis of circulating tumour DNA (ctDNA) through minimally invasive liquid biopsies is promising for early multi-cancer detection and monitoring minimal residual disease. Most existing methods focus on targeted deep sequencing, but few integrate multiple data modalities. Here, we develop a methodology for ctDNA detection using deep (80x) whole-genome TET-Assisted Pyridine Borane Sequencing (TAPS), a less destructive approach than bisulphite sequencing, which permits the simultaneous analysis of genomic and methylomic data.
View Article and Find Full Text PDFPlant Genome
March 2025
College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China.
Machine learning (ML) has garnered significant attention for its potential to enhance the accuracy of genomic predictions (GPs) in various economic crops with the use of complete genomic information. Genome-wide association studies (GWAS) are widely used to pinpoint trait-related causal variant loci in genomes. However, the simultaneous integration of both methods for crop genome prediction necessitates further research.
View Article and Find Full Text PDFNature
January 2025
Department of Chemistry, The University of Hong Kong, Hong Kong SAR, China.
Mimicking the superstructures and properties of spherical biological encapsulants such as viral capsids and ferritin offers viable pathways to understand their chiral assemblies and functional roles in living systems. However, stereospecific assembly of artificial polyhedra with mechanical properties and guest-binding attributes akin to biological encapsulants remains a formidable challenge. Here we report the stereospecific assembly of dynamic supramolecular snub cubes from 12 helical macrocycles, which are held together by 144 weak C-H hydrogen bonds.
View Article and Find Full Text PDFSci Rep
January 2025
College of Civil Engineering, Department of Bridge Engineering, Tongji University, Shanghai, 200092, China.
Addressing environmental challenges such as pollution and resource depletion requires innovative industrial and municipal waste management approaches. Cement production, a significant contributor to greenhouse gas emissions, highlights the need for eco-friendly building materials to combat global warming and promote sustainability. This study evaluates the simultaneous use of Sugarcane Bagasse Ash (SCBA) and Stone Dust (SD) as partial replacements by volume for cement and sand, respectively, at varying ratios in eco-strength concrete mixes designed for 28 MPa (ES-28) and 34 MPa (ES-34), emphasizing their economic and environmental benefits.
View Article and Find Full Text PDFNeuroimage
January 2025
School of Instrumentation Science and Optoelectronic Engineering, Beihang University, Beijing, 100191, China; Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation and Optoelectronic Engineering, Beihang University, 100191, Beijing, China; National Innovation Platform for industry-Education Integration in Medicine-Engineering Interdisciplinary, Shandong Key Laboratory for Magnetic Field-free Medicine and Functional Imaging, Shandong University, Research Institute of Shandong University, Jinan, 250014, China; National Institute of Extremely-Weak Magnetic Field Infrastructure, Hangzhou, 310051, China; State Key Laboratory of Traditional Chinese Medicine Syndrome/Health Construction Center, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China; Hefei National Laboratory, Hefei, 230088, China. Electronic address:
The optically pumped magnetometer (OPM) based magnetoencephalography (MEG) system offers advantages such as flexible layout and wearability. However, the position instability or jitter of OPM sensors can result in bad channels and segments, which significantly impede subsequent preprocessing and analysis. Most common methods directly reject or interpolate to repair these bad channels and segments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!