Background: Drug mass spectrometry imaging (MSI) data contain knowledge about drug and several other molecular ions present in a biological sample. However, a proper approach to fully explore the potential of such type of data is still missing. Therefore, a computational pipeline that combines different spatial and non-spatial methods is proposed to link the observed drug distribution profile with tumor heterogeneity in solid tumor. Our data analysis steps include pre-processing of MSI data, cluster analysis, drug local indicators of spatial association (LISA) map, and ions selection.
Results: The number of clusters identified from different tumor tissues. The spatial homogeneity of the individual cluster was measured using a modified version of our drug homogeneity method. The clustered image and drug LISA map were simultaneously analyzed to link identified clusters with observed drug distribution profile. Finally, ions selection was performed using the spatially aware method.
Conclusions: In this paper, we have shown an approach to correlate the drug distribution with spatial heterogeneity in untargeted MSI data. Our approach is freely available in an R package 'CorrDrugTumorMSI'.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7688471 | PMC |
http://dx.doi.org/10.1093/gigascience/giaa131 | DOI Listing |
Eur J Nucl Med Mol Imaging
January 2025
Department of Hepatobiliary Surgery and Liver Transplantation Center, The Fifth Affiliated Hospital of Sun Yat-Sen University, 52 Mei Hua East Road, Zhuhai, 519000, China.
Purpose: Cancer-associated fibroblasts (CAFs) are the primary stromal component of the tumor microenvironment in hepatocellular carcinoma (HCC), affecting tumor progression and post-resection recurrence. Fibroblast activation protein (FAP) is a key biomarker of CAFs. However, there is limited evidence on using FAP as a target in near-infrared (NIR) fluorescence imaging for HCC.
View Article and Find Full Text PDFRedox Rep
December 2025
Laboratory of Radiation Biology, Department of Applied Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan.
Targeting ferroptosis, cell death caused by the iron-dependent accumulation of lipid peroxides, and disruption of the redox balance are promising strategies in cancer therapy owing to the physiological characteristics of cancer cells. However, the detection of ferroptosis using imaging remains challenging. We previously reported that redox maps showing the reduction power per unit time of implanted tumor tissues via non-invasive redox imaging using a novel, compact, and portable electron paramagnetic resonance imaging (EPRI) device could be compared with tumor tissue sections.
View Article and Find Full Text PDFMol Pharm
January 2025
Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India.
Tyrosine kinase inhibitors have been employed for the treatment of lung cancer, owing to their role in regulating irregulated pathways or mutated genes. Bosutinib, a nonreceptor tyrosine kinase, has been recently investigated for lung cancer treatment. Bosutinib can also be used with paclitaxel as a combinatorial approach to receive a synergistic effect for the effective management of lung cancer.
View Article and Find Full Text PDFIndian J Clin Biochem
January 2025
Department Nanobiechnology, Institute Pasteur of Iran, Tehran, Iran.
Oral cavity cancer poses a significant health threat due to its aggressive nature and limited responsiveness to traditional therapies like chemotherapy and radiation, highlighting the need for more effective treatment options. To address this, researchers have explored a novel approach using niosome nanoparticles to co-encapsulate curcumin (CUR) and cisplatin (Cis), to enhance therapeutic efficacy. While CUR has anti-cancer properties, its poor bioavailability limits its effectiveness.
View Article and Find Full Text PDFInt J Nanomedicine
January 2025
Department of Pharmaceutical Sciences, School of Pharmacy, Lebanese American University, Byblos, Lebanon.
Introduction: Androgenetic alopecia (AGA) is a multifactorial and age-related dermatological disease that affects both males and females, usually at older ages. Traditional hair repair drugs exemplified by minoxidil have limitations such as skin irritation and hypertrichosis. Thus, attention has been shifted to the use of repurposing drugs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!