Background: Fusion genes form as a result of abnormal chromosomal rearrangements linking previously separate genes into one transcript. The FGFR3-TACC3 fusion gene (F3-T3) has been shown to drive gliomagenesis in glioblastoma (GBM), a cancer that is notoriously resistant to therapy. However, successful targeting of F3-T3 via small molecular inhibitors has not revealed robust therapeutic responses, and specific targeting of F3-T3 has not been achieved heretofore. Here, we demonstrate that depleting F3-T3 using custom siRNA to the fusion breakpoint junction results in successful inhibition of F3-T3+ GBMs, and that exosomes can successfully deliver these siRNAs.
Methods: We engineered 10 unique siRNAs (iF3T3) that specifically spanned the most common F3-T3 breakpoint with varying degrees of overlap, and assayed depletion by qPCR and immunoblotting. Cell viability assays were performed. Mesenchymal stem cell-derived exosomes (UC-MSC) were electroporated with iF3T3, added to cells, and F3-T3 depletion measured by qPCR.
Results: We verified that depleting F3-T3 using shRNA to FGFR3 resulted in decreased cell viability and improved survival in glioma-bearing mice. We then demonstrated that 7/10 iF3T3 depleted F3-T3, and importantly, did not affect levels of wild-type (WT) FGFR3 or TACC3. iF3T3 decreased cell viability in both F3T3+ GBM and bladder cancer cell lines. UC-MSC exosomes successfully delivered iF3T3 in vitro, resulting in F3-T3 depletion.
Conclusion: Targeting F3-T3 using siRNAs specific to the fusion breakpoint is capable of eradicating F3T3+ cancers without toxicity related to inhibition of WT FGFR3 or TACC3, and UC-MSC exosomes may be a plausible vehicle to deliver iF3T3.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7680176 | PMC |
http://dx.doi.org/10.1093/noajnl/vdaa132 | DOI Listing |
Pathogens
December 2024
College of Public Health, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China.
This study aimed to explore the interactions among genetic determinants influencing ciprofloxacin resistance in . Treatment with PAβN, an efflux pump inhibitor, resulted in a 4-32-fold reduction in the minimum inhibitory concentration (MIC) across all 18 ciprofloxacin-resistant isolates. Notably, isolates without point mutations reverted from resistance to sensitivity.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
School of Medicine and Dentistry, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK.
Cancer is among the leading causes of mortality in developed countries due to limited available therapeutic modalities and high rate of morbidity. Although malignancies might show individual genetic landscapes, recurring aberrations in the neoplastic genome have been identified in the wide range of transformed cells. These include translocations of frequently affected loci of the human genetic material like the Ewing sarcoma breakpoint region 1 () of chromosome 22 that results in malignancies with mesodermal origin.
View Article and Find Full Text PDFBiomolecules
December 2024
Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
Acute promyelocytic leukemia (APL) accounts for approximately 10-15% of newly diagnosed acute myeloid leukemia cases and presents with coagulopathy and bleeding. Prompt diagnosis and treatment are required to minimize early mortality in APL as initiation of all-trans retinoic acid therapy rapidly reverses coagulopathy. The fusion is a hallmark of APL and its rapid identification is essential for rapid initiation of specific treatment to prevent early deaths from coagulopathy and bleeding and optimize patient outcomes.
View Article and Find Full Text PDFActa Neuropathol Commun
January 2025
Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.
Recent genomic studies have allowed the subdivision of intracranial ependymomas into molecularly distinct groups with highly specific clinical features and outcomes. The majority of supratentorial ependymomas (ST-EPN) harbor ZFTA-RELA fusions which were designated, in general, as an intermediate risk tumor variant. However, molecular prognosticators within ST-EPN ZFTA-RELA have not been determined yet.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Suite 523, Bridgeside Point II, 450 Technology Drive, Pittsburgh, PA, 15219, USA.
Overexpression of the myeloid Src-family kinases Fgr and Hck has been linked to the development of acute myeloid leukemia (AML). Here we characterized the contribution of active forms of these kinases to AML cell cytokine dependence, inhibitor sensitivity, and AML cell engraftment in vivo. The human TF-1 erythroleukemia cell line was used as a model system as it does not express endogenous Hck or Fgr.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!